Model | AUC(95%CI) | sensitivity | specificity | PPV | NPV | Accuracy | Precision | Recall | F1 value |
---|---|---|---|---|---|---|---|---|---|
Training group | Â | Â | Â | Â | Â | Â | Â | Â | |
LR | 0.778(0.704–0.852) | 0.724 | 0.745 | 0.636 | 0.814 | 0.737 | 0.636 | 0.724 | 0.677 |
LASSO | 0.789(0.717–0.862) | 0.741 | 0.777 | 0.672 | 0.830 | 0.763 | 0.672 | 0.741 | 0.705 |
SVM | 0.760(0.683–0.837) | 0.862 | 0.585 | 0.562 | 0.873 | 0.691 | 0.562 | 0.862 | 0.680 |
XGBoost | 0.783(0.710–0.855) | 0.897 | 0.585 | 0.571 | 0.902 | 0.704 | 0.571 | 0.897 | 0.698 |
RF | 0.782(0.707–0.856) | 0.741 | 0.766 | 0.662 | 0.828 | 0.757 | 0.662 | 0.741 | 0.699 |
Testing group | Â | Â | Â | Â | Â | Â | Â | Â | |
LR | 0.664(0.532–0.796) | 0.767 | 0.528 | 0.575 | 0.731 | 0.636 | 0.575 | 0.767 | 0.657 |
LASSO | 0.765(0.649–0.881) | 0.767 | 0.694 | 0.676 | 0.781 | 0.727 | 0.676 | 0.767 | 0.717 |
SVM | 0.756(0.638–0.874) | 0.933 | 0.500 | 0.609 | 0.900 | 0.697 | 0.609 | 0.933 | 0.737 |
XGBoost | 0.721(0.599–0.844) | 0.800 | 0.583 | 0.615 | 0.778 | 0.682 | 0.615 | 0.800 | 0.695 |
RF | 0.693(0.566–0.819) | 0.800 | 0.528 | 0.585 | 0.760 | 0.652 | 0.585 | 0.800 | 0.558 |