Skip to main content

Table 2 Statistical comparison of machine learning models for the occurrence of thrombolysis resistance

From: Machine learning-based predictive model for the development of thrombolysis resistance in patients with acute ischemic stroke

Model

AUC(95%CI)

sensitivity

specificity

PPV

NPV

Accuracy

Precision

Recall

F1 value

Training group

        

LR

0.778(0.704–0.852)

0.724

0.745

0.636

0.814

0.737

0.636

0.724

0.677

LASSO

0.789(0.717–0.862)

0.741

0.777

0.672

0.830

0.763

0.672

0.741

0.705

SVM

0.760(0.683–0.837)

0.862

0.585

0.562

0.873

0.691

0.562

0.862

0.680

XGBoost

0.783(0.710–0.855)

0.897

0.585

0.571

0.902

0.704

0.571

0.897

0.698

RF

0.782(0.707–0.856)

0.741

0.766

0.662

0.828

0.757

0.662

0.741

0.699

Testing group

        

LR

0.664(0.532–0.796)

0.767

0.528

0.575

0.731

0.636

0.575

0.767

0.657

LASSO

0.765(0.649–0.881)

0.767

0.694

0.676

0.781

0.727

0.676

0.767

0.717

SVM

0.756(0.638–0.874)

0.933

0.500

0.609

0.900

0.697

0.609

0.933

0.737

XGBoost

0.721(0.599–0.844)

0.800

0.583

0.615

0.778

0.682

0.615

0.800

0.695

RF

0.693(0.566–0.819)

0.800

0.528

0.585

0.760

0.652

0.585

0.800

0.558

  1. Abbreviations LR, logistic regression; LASSO, the least absolute shrinkage and selection operator; XGBoost, extreme gradient boosting; SVM, support vector machine; RF, random forest; AUC, area under the curve; CI, confidence interval; PPV, positive predictive value; NPV, negative predictive value