Skip to main content

Table 4 Performance comparison for K-fold Cross Validation with different values of K for dataset #1

From: A robust Parkinson’s disease detection model based on time-varying synaptic efficacy function in spiking neural network

Technology

Accuracy (in %)

Sensitivity (in %)

Specificity (in %)

MCC

Precision

F1 Score

Gmean

K = 3

 MLP-NN

94.36

89.03

96.79

0.8502

0.8860

0.8798

0.9262

 RBF-NN

84.61

51.32

95.06

0.5450

0.7906

0.6125

0.6937

 RNN

96.5

94

98.05

0.95

0.9988

0.9682

0.96

 LSTM

93.62

80.87

99.96

0.91

100

0.893

0.899

 SEFRON [Dataset#1]

99.49

96.97

100

0.9816

1

0.9841

0.9845

K = 5

 MLP-NN

94.36

85.68

97.53

0.8373

0.8933

0.8641

0.9116

 RBF-NN

83.08

49.62

93.61

0.4913

0.7110

0.5802

0.6743

 RNN

96.67

95.83

98

0.9063

1.0

0.9787

0.969

 LSTM

97.85

88.9

77

0.93

0.971

0.93

0.812

 SEFRON [Dataset#1]

99.48

96

100

0.9763

1

0.9778

0.9789

K = 8

 MLP-NN

94.35

83.54

98.09

0.8432

0.9292

0.8700

0.9019

 RBF-NN

83.63

49.27

94.15

0.5208

0.7833

0.5978

0.6780

 RNN

91.94

80.4

98.21

0.82

0.77

0.89

0.87

 LSTM

95.52

92.84

98

0.9017

0.9622

0.93

0.943

 SEFRON [Dataset#1]

98.96

95.63

100

0.9702

1

0.9756

0.9768

K = 10

 MLP-NN

95.39

88.42

98.13

0.8756

0.93

0.8997

0.9294

 RBF-NN

84.68

49.67

95.95

0.5270

0.7583

0.5946

0.6809

 RNN

92.11

100

88.69

0.84

0.78

0.86

0.93

 LSTM

93.87

84.56

98.33

0.90

0.9273

0.89

0.899

 SEFRON [Dataset#1]

99.47

95

100

0.9687

1

0.9667

0.9708