Skip to main content

Table 5 Performance comparison with different percentage split for dataset #1

From: A robust Parkinson’s disease detection model based on time-varying synaptic efficacy function in spiking neural network

Technology

Accuracy (in %)

Sensitivity (in %)

Specificity (in %)

MCC

Precision

F1 Score

Gmean

90% training set − 10% testing set

 MLP-NN

95

83.33

100

0.8819

1

0.9091

0.9129

 RBF-NN

85

66.67

92.86

0.6299

0.8

0.7273

0.7868

 RNN

90

87.5

100

0.7638

1.0

0.9333

0.9354

 LSTM

85

81.25

100

0.6813

1.0

0.8965

0.9014

 SEFRON [Dataset#1]

100

100

100

1

1

1

1

85% training set − 15% testing set

 MLP-NN

90

83.33

91.67

0.7092

0.7143

0.7692

0.8740

 RBF-NN

90

66.67

95.83

0.6708

0.8

0.7273

0.7993

 RNN

88.7

66

100

0.7512

1.0

0.7911

0.812

 LSTM

89.72

100

84.3

0.808

0.7767

0.8743

0.92

 SEFRON [Dataset#1]

93.33

100

91.67

0.8292

0.75

0.8571

0.9574

80% training set − 20% testing set

 MLP-NN

92.31

87.5

93.55

0.7767

0.7778

0.8235

0.9047

 RBF-NN

89.74

62.5

96.77

0.6633

0.8333

0.7143

0.7777

 RNN

92.86

100

90.11

0.85

0.80

0.89

0.95

 LSTM

90

74.5

94.24

0.9274

1.0

0.9836

0.9837

 SEFRON [Dataset#1]

92.31

87.5

93.55

0.7767

0.7778

0.8235

0.9047

70% training set − 30% testing set

 MLP-NN

93.22

84.62

95.65

0.8027

0.8462

0.8462

0.8996

 RBF-NN

84.74

53.85

93.47

0.5223

0.7

0.6087

0.71

 RNN

93.22

93.61

91.67

0.8068

0.9778

0.9565

0.9263

 LSTM

93.22

93.61

91.67

0.8068

0.9778

0.9565

0.9263

 SEFRON [Dataset#1]

89.83

100

86.96

0.7713

0.6842

0.8125

0.9325