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Abstract
Background  Elevated blood glucose (BG) variability has been reported as an independent risk factor for poor 
prognosis in a variety of diseases. This study aimed to investigate the association between BG variability and clinical 
outcomes in patients with spontaneous cerebellar hemorrhage (SCH) undergoing surgical operation.

Methods  This retrospective cohort study of the consecutive patients admitted to the department of Neurosurgery, 
the Affiliated Hospital of Qingdao University between January 2014 and June 2022 with the diagnosis of SCH 
underwent surgical intervention. BG analysis was continuously and routinely performed. BG variability was 
represented by the standard deviation (SD) of the serial measurements within the first 7 days. The general 
characteristics, imageological information, blood glucose level, and surgical information were reviewed and 
compared through medical records.

Results  A total of 115 patients (65 male and 50 female) were enrolled. Out of all 115 patients, the overall clinical 
outcomes according to the modified Rankin Scale (mRS) were poor (mRS 3–6) in 31 patients (26.96%) and good 
(mRS 0–2) in 84 patients (73.04%). Twelve of the 115 patients died during hospitalization, and the mortality rate was 
10.43%. Multivariate logistic regression analysis showed that SD of BG (odds ratio (OR), 4.717; 95% confidence interval 
(CI), 1.054–21.115; P = 0.043), GCS (OR, 0.563; 95% CI, 0.330–0.958; P = 0.034), and hematoma volume (OR, 1.395; 95% 
CI, 1.118–1.748; P = 0.003) were significant predictors. The area under the ROC curve of SD of BG was 0.911 (95% CI, 
0.850–0.973; P < 0.001) with a sensitivity and specificity of 90.3% and 83.3%, respectively, and the cut-off value was 
1.736.

Conclusions  High BG Variability is independently correlated with the 6-month poor outcomes in patients with SCH 
undergoing surgical operation.
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Introduction
Spontaneous cerebellar hemorrhage (SCH) is a subtype 
of hemorrhagic stroke, and accounts for 5–10% of all 
patients with spontaneous intracerebral hemorrhage [1, 
2], and hypertension is the common cause [3]. As a rela-
tively closed and narrow space, the posterior fossa lacks 
adequate compensation for the occupying effect of hema-
toma. Smaller cerebellar hematoma also tends to cause 
compression of the brain stem and fourth ventricle, and 
leads to acute obstructive hydrocephalus and a signifi-
cant decrease in consciousness [4–6]. Furthermore, the 
hematoma can break into the ventricular system via the 
fourth ventricle, induce and aggravate the hydrocephalus 
[7]. Although the effectiveness of supratentorial hemor-
rhage is still controversial, the surgical operation of cer-
ebellar hemorrhage has a positive effect on improving the 
clinical prognosis [2, 8, 9]. Surgical intervention should 
be considered if brain stem compression and/or acute 
hydrocephalus attributed to mass effect from hematoma. 
Compared with supratentorial intracerebral hemorrhage, 
the pathophysiological mechanisms and treatment strat-
egies of SCH are different, so the risk factors should be 
analyzed separately [6, 8], but fewer data are available 
concerning.

Hyperglycemia is often associated with unfavorable 
outcomes in patients with acute critical illness, as is intra-
cranial hemorrhage [10–12]. Most previous studies have 
focused on the relationship between absolute blood glu-
cose (BG) levels at admission and clinical outcomes [13, 
14]. There are also researcher who reported that BG level 
at admission was not the independent risk factor for the 
prognosis of patients with cerebral hemorrhage [15, 16]. 
Data from recent studies suggest that continuous mea-
surement of BG during hospital stay are more predictive 
value than a single dose of BG at admission [17, 18]. Sev-
eral previous investigators reported that Increased BG 
variability was an independent predictor of worse clini-
cal outcomes in various subgroups critical ill patients, 
not limited to patients with stroke [12, 19–21]. However, 
it is not known that the association between increased 
BG variability and clinical outcomes in SCH patients 
underwent surgical treatment. The purpose of this study 
was to investigate the relationship between increased BG 
variability as reflected by the standard deviation (SD) on 
clinical outcomes in SCH patients underwent surgical 
operation.

Methods
Study cohort
This study is a retrospective cohort study and is reported 
following the STROBE guidelines [22]. This retrospective 
cohort study of the consecutive patients admitted to the 
department of Neurosurgery, the Affiliated Hospital of 
Qingdao University between January 2014 and June 2022 

with the diagnosis of SCH underwent surgical interven-
tion. SCH was diagnosed by two senior neurosurgeons 
and one radiologist based on history of present illness, 
neuroimaging, and surgical operation findings.

Inclusion criteria were: aged ≥ 18 year-old; diagnosed 
with SCH; underwent surgical operation treatment; hos-
pital stay more than 7 days.

Exclusion criteria were: with a history of craniotomy, 
traumatic brain injury or stroke; secondary cerebellar 
hemorrhage; incomplete information; loss of follow-up.

Clinical data collection
Clinical information during hospitalization was collected 
from the information system and the scientific research 
big data platform of our hospital. Basic population infor-
mation, such as gender, age, weight, height, past medical 
history, and personal life history were registered. Vital 
signs were monitored and recorded. The level of con-
sciousness was assessed and quantified with the Glasgow 
Coma Scale (GCS) [23]. The blood routine analysis, 
blood biochemical analysis and hemagglutination were 
performed immediately on admission.

BG was measured immediately upon admission, and 
hyperglycemia was defined as fasting BG levels on admis-
sion ≥ 6.9mmol/L. Insulin was administered and adjusted 
for patients whose BG was ≥ 10mmol/L, and control the 
BG between 7 and 9 mmol/L. Fingertip blood glucose 
testing was performed regularly. BG tests were routinely 
performed 3 times a day, and 6 times (about 06:30, 09:30, 
12:30, 15:30, 18:30 and 21:30) if the BG tests were abnor-
mal during hospitalization. The laboratory testing was 
not performed during sleep at night, unless the condition 
changes, so as not to affect patients’ rest. For each patient 
enrolled in the study, the mean BG concentration and 
SD were calculated. The variability of BG levels in this 
patient was reflected by SD values.

Brain CT scanning was performed within 2 h at admis-
sion for all patients. The angiography and/or magnetic 
resonance imaging (MRI) scans were performed if the 
cause of the bleeding was suspicious. The location and 
size of the hematoma and intraventricular hemorrhage 
were evaluated. The hematoma volume was calculated 
using the hematoma volume calculation formula: “0.5 × 
a × b × c”, where ‘a’ and ‘b’ are the diameters of the larg-
est section measured by CT scan, and ‘c’ is the CT scan 
thickness (cm), was used to calculate the volume of the 
hematoma [24]. The main hematoma location was cat-
egorized into vermis, cerebellar hemispheric or hemi-
spheres + vermis. Based on the condition and imaging 
characteristics, the neurosurgeon determined the surgi-
cal method with the consent of the patient’s guardians. 
The indications and procedures of operation are per-
formed in accordance with the corresponding surgical 
guidelines and conventional surgical procedures [7, 25], 
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and necessary adjustments were made according to the 
characteristics of the patient. Every patient receives stan-
dard and necessary medical care. Admission to the neu-
rosurgical intensive care unit and the length of stay was 
determined by consensus between the neurocritical care 
physician and neurosurgeon based on the state and needs 
of each patient.

The routine follow-up was performed at the neuro-
surgery clinic, and the telephone interviews was also 
accepted if the patient put off checking-up or has 
limited mobility [26–28]. Patients who were lost to 
follow-up and died from other unrelated causes were 
excluded. The modified Rankin Scale (mRS) was used 
to evaluate the prognosis [29]. The prognosis was eval-
uated at 6-month after onset. All Patients were divided 
into two groups based on mRS: good prognosis group 
(mRS 0–2) and poor prognosis group (mRS 3–6).

Statistical analysis
IBM SPSS Statistics 24.0 (SPSS Inc., Chicago, Illinois, 
USA) was used to statistical analysis. It is estimated 
that the sample size of this study meets the require-
ments. The means ± SD was used to shown the normal 
distribution variables. The median and interquartile 
ranges (25th to 75th percentile) were used to repre-
sent the abnormal distribution of continuous variables. 
Categorical variables were presented as frequency 
and percentage. Student’s t test was used to compare 
the continuous variables of normal distribution. The 
Kruskal-Wallis test was used to compare the abnor-
mal distribution continuous variables. The Chi-square 
test was used to compare the categorical data vari-
ables. The logistic regression analyses was conducted 
to build a prediction model. Receiver operating char-
acteristic curve (ROC) analysis was performed to 
demonstrate the predictive value of the parameters, 
compare the area under the curves (AUC) and define 
the cutoff value. The difference was statistically signif-
icant in P value < 0.05.

Results
The demographics’ information of all patients is pre-
sented in Table  1. A total of 115 consecutive patients 
with SCH underwent surgical operation were enrolled. 
(Fig.  1). Of these, 84 patients (73.04%) had good out-
comes (mRS 0–2) and 31 (26.96%) had poor outcomes 
(mRS 3–6) at 6 months after attack. Twelve of the 115 
patients died during hospitalization, and the mortality 
rate was 10.43%. Sixty-five of the 115 patients (56.52%) 
were male. The median age was 63 years (interquartile 
range, 54–71 years).

Of the 115 patients, 55 had cerebellar hematoma 
mainly located in the left cerebellar hemisphere, 38 

patients in the right, 10 patients in the left hemisphere 
and vermis, 7 patients in the right hemisphere and ver-
mis, and 5 patients in the left and right hemispheres and 
vermis. (Fig.  2) The difference among different hema-
toma locations correlated with the 6-month prognosis 
had no statistical significance (P = 0.496). Forty-seven 
patients (40.87%) had Ventricular hematocele, but there 
was no significant effect on 6-month clinical prognosis 
(P = 0.064). All patients underwent surgical operation; 
72 patients (62.61%) underwent craniotomy, 10 patients 
(8.70%) underwent hematoma drainage; and 33 patients 
(28.70%) underwent lateral ventricle drainage. The dif-
ference among different surgical operations correlated 
with the 6-month prognosis had no statistical signifi-
cance (P = 0.496). The total hospital stay total hospital 
stay and total hospital stay in the favorable group were 
significantly shorter than those in the unfavorable group 
(18 days vs. 13 days, P = 0.015; 10 day vs. 0 days, P < 0.001; 
respectively).

Univariate and multivariate logistic regression analyses
The results of univariate and multivariate logistic 
regression analyses are shown in Table  2. Univariate 
analysis revealed that GCS (odds ratio (OR), 0.493; 
95% confidence interval (CI), 0.380–0.641; P < 0.001), 
hydrocephalus (OR, 5.556; 95%CI, 2.064–14.955; 
P = 0.001), hematoma volume (OR, 1.493; 95%CI, 
1.277–1.745; P < 0.001), BG on admission (OR, 1.752; 
95%CI, 1.399–2.193; P < 0.001), and SD of BG (OR, 
6.977; 95%CI, 3.317–14.675; P < 0.001) were signifi-
cantly correlated with the 6-month prognosis.

These significant factors were further analyzed 
with multivariate logistic regression analysis. The SD 
of BG (OR, 4.717; 95% CI, 1.054–21.115; P = 0.043), 
GCS (OR, 0.563; 95% CI, 0.330–0.958; P = 0.034), and 
hematoma volume (OR, 1.395; 95% CI, 1.118–1.748; 
P = 0.003) were found to be associated with 6-month 
prognosis after onset.

ROC curve analysis
The predictive ability of GCS, hematoma volume, 
and SD of BG was demonstrated using ROC curves 
(Fig. 3; Table 3). The corresponding AUC of GCS was 
0.040 (95% CI, 0.009–0.070, P < 0.001), and the cutoff 
value was 12.5, with a specificity and sensitivity of 
82.1% and 100%, respectively. The ROC curve AUC 
of hematoma volume was 0.954 (95% CI, 0.912–0.995, 
P < 0.001), and the cutoff value was 17.5, with a speci-
ficity and sensitivity of 94.0% and 83.9%, respectively. 
The ROC curve AUC of SD of BG was 0.911 (95% 
CI, 0.850–0.973, P < 0.001), and the cutoff value was 
1.736, with a specificity and sensitivity of 83.3% and 
90.3%, respectively.
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Discussion
We retrospective retrieved and analyzed the clinical 
data from SCH patients who underwent surgical opera-
tion in our neurosurgical center during an 6-year period. 
The multivariate logistic regression analysis and ROC 
curve analysis were used to determine the predictors. 

We found that GCS, hematoma volume, and SD of BG 
were important 6-month predictors in SCH patients 
who underwent surgical operation. GCS and hematoma 
volume are the conventional useful prognostic indica-
tors of SCH, while SD of BG is a new indicator. These 
results suggest that BG variability is an independent risk 

Table 1  The demographic and baseline characteristics
Variable Total (n = 115) 6-month prognosis P-value

Favorable (n = 84) Unfavorable (n = 31)
Sex (male, %) 65 (56.52) 49 (58.33) 16 (51.61) 0.519
Age (years) 63.00 (54.00–71.00) 63.00 (56.25–70.75) 64.00 (42.00–75.00) 0.377
BMI 24.20 (21.50–26.70) 24.20 (21.53–26.65) 23.90 (21.50–27.20) 0.845
Smoking (%) 22 (19.13) 17 (20.24) 5 (16.13) 0.619
Drinking (%) 17 (14.78) 12 (14.29) 5 (16.13) 0.774
Hypertension (%) 73 (63.48) 52 (61.90) 21 (67.74) 0.564
Cardiac insufficiency (%) 8 (6.96) 7 (8.33) 1 (3.23) 0.311
History of Diabetes 15 (13.04) 8 (9.52) 7 (22.58) 0.125
Systolic Pressure (mmHg) 156.00 (140.00-176.00) 154.00 (136.25–171.50) 162.00 (145.00-180.00) 0.282
Diastolic Pressure (mmHg) 91.00 (82.00-102.00) 90.50 (82.25–100.00) 91.00 (81.00-105.00) 0.508
Heart rate (%) 84.00 (76.00–90.00) 80.00 (76.00–90.00) 86.00 (78.00–98.00) 0.157
Length of ICU stay (days) 0.00 (0.00–4.00) 0.00 (0.00–1.00) 10.00 (10.00–18.00) < 0.001
Length of stay (days) 14.00 (10.00–20.00) 13.00 (9.25–18.75) 18.00 (11.00–27.00) 0.015
GCS on admission 14.00 (9.00–15.00) 15.00 (13.00–15.00) 6.00 (4.00–9.00) < 0.001
Ventricular hematocele (%) 47 (40.87) 30 (35.71) 17 (54.84) 0.064
Hydrocephalus (%) 61 (53.04) 36 (42.86) 25 (80.65) < 0.001
Hematoma volume (mL) 10.00 (10.00–20.00) 10.00 (10.00–15.00) 25.00 (20.00–30.00) < 0.001
Hematoma location (%)
Hematoma location

0.916

Left hemispheres 55 (47.80) 39 (46.43) 16 (51.61)
Right hemispheres 38 (33.00) 28 (33.33) 10 (32.26)
Left hemispheres + vermis 10 (8.70) 7 (8.33) 3 (9.68)
Right hemispheres + vermis 7 (6.10) 6 (7.14) 1 (3.23)
Left and right hemispheres + vermis 5 (4.30) 4 (4.76) 1 (3.23)
Surgical approach (%) 0.496
Craniotomy 72 (62.61) 55 (65.48) 17 (54.84)
Hematoma drainage 10 (8.70) 6 (7.14) 4 (12.90)
Lateral ventricle catheterization 33 (28.70) 23 (27.38) 10 (32.26)
WBCs (×109/L) 11.90 (10.13–14.84) 11.66 (9.58–14.65) 13.53 (11.29–15.02) 0.069
Hemoglobin (g/L) 146.00 (136.00-158.00) 145.50 (136.25–157.50) 146.00 (136.00-159.00) 0.885
Platelet (×109/L) 203.00 (176.00-255.00) 197.50 (174.50-251.75) 207.00 (185.00-267.00) 0.301
Serum albumin (g/L) 39.40 (36.55–42.47) 39.80 (36.70-42.85) 38.30 (34.00-41.70) 0.057
Creatinine (umol/L) 62.00 (51.20–72.00) 60.55 (50.23–70.60) 67.70 (53.40-77.14) 0.155
Uric acid (µmol/L) 230.00 (174.10-286.10) 224.40 (173.28-274.95) 237.40 (178.00-310.00) 0.516
Total bilirubin (umol/L) 15.24 (12.00-19.38) 15.22 (12.06–19.70) 15.30 (10.40–18.80) 0.630
Triglyceride (mmol/L) 1.16 (0.78–1.53) 1.22 (0.78–1.67) 0.99 (0.63–1.29) 0.073
Fibrinogen (mmol/L) 3.10 (2.52–3.59) 3.05 (2.52–3.49) 3.15 (2.56–3.73) 0.664
D-dimer (µg/L)• 461.00 (290.00-800.00) 455.00 (310.00-840.00) 470.00 (270.00-770.00) 0.907
Serum K+ (mmol/L) 3.84 (3.50–4.10) 3.90 (3.50–4.10) 3.60 (3.49–4.20) 0.155
Serum Na+ (mmol/L) 140.55 (138.00-142.53) 140.25 (138.00-142.23) 141.05 (137.75-143.33) 0.394
BG on admission (mmol/L)• 7.98 (6.30-10.08) 7.05 (6.12–8.65) 11.30 (9.10–14.20) < 0.001
Mean of BG (mmol/L) 6.84 (6.09–8.13) 6.85 (5.94–8.07) 6.77 (6.24–8.15) 0.640
SD of BG 1.22 (0.69–2.17) 0.96 (0.59–1.43) 2.26 (2.03–3.96) < 0.001
BMI, body mass index; GCS, Glasgow coma scale; BG, ; WBCs, white blood cells; SD, K+, potassium ion; Na+, sodion

The significance of bold data: P < 0.05
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marker for SCH patients underwent surgical treatment. 
As far as we know, we showed that the SD of BG is inde-
pendently correlated with the 6-month prognosis in SCH 
patients underwent surgical operation in this study for 
the first time. These findings may be useful for the doc-
tors and nurses to assess the condition and therapeutic 
regimen. At the same time, help the patients’ families to 

understand the severity of the disease, in order to adjust 
their role to face the challenges of life.

BG variability reflects the tendency of BG levels to fluc-
tuate, and is considered as a third indicator of dysglyce-
mia apart from hypoglycemia and hyperglycemia [21, 30, 
31]. The basis of increased BG variability is high blood 
glucose levels in patients with acute stroke. Post-stroke 

Fig. 1  The study flow chart
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hyperglycemia is mainly attributed to stress hyperglyce-
mia, diabetes with poor control, and stress elevation of 
BG on the basis of diabetes. Stress hyperglycemia after 
acute stroke, especially hemorrhagic stroke, has strong 
associations with poor functional recovery and high mor-
tality [32–34]. Stress hyperglycemia after acute stroke 
reduces the level of energy metabolism of brain micro-
vascular endothelial cells and aggravates the destruc-
tion in blood-brain barrier by inhibiting mitochondrial 

function [35]. Vascular endothelial cell injury and 
increased blood-brain barrier permeability promote the 
progression of vasogenic brain edema around the hema-
toma, ultimately leading to neuron death [36]. Tao et al. 
[8] retrospectively analyzed the relationship between 
BG level at admission and 6-month clinical outcome 
in 77 patients with cerebellar hemorrhage, and found a 
significant negative correlation between high BG level 
at admission and 6-month clinical outcome through 

Table 2  Univariate and multivariate regression analysis of factors related to prognosis
Predictors Univariate analysis Multivariate analysis

OR (95% CI) P-value OR (95% CI) P-value
GCS on admission 0.493 (0.380–0.641) < 0.001 0.563 (0.330–0.958) 0.034
Hydrocephalus 5.556 (2.064–14.955) 0.001 0.181 (0.009–3.834) 0.272
Hematoma volume 1.493 (1.277–1.745) < 0.001 1.398 (1.118–1.748) 0.003
BG on admission 1.752 (1.399–2.193) < 0.001 0.903 (0.517–1.577) 0.719
SD of BG 6.977 (3.317–14.675) < 0.001 4.717 (1.054–21.115) 0.043
GCS, Glasgow coma scale; PNI, prognostic nutritional index; WBCs, white blood cells; RBCs, red blood cells, K+, potassium ion

The significance of bold data: P < 0.05

Table 3  Diagnostic values of factors related to poor prognosis
Variable AUC (95% CI) P-value Cutoff Value Sensitivity Specificity
GCS on admission 0.040 (0.009–0.070) < 0.001 12.5 1.000 0.821
Hematoma volume 0.954 (0.912–0.995) < 0.001 17.500 0.839 0.940
SD of BG 0.911 (0.850–0.973) < 0.001 1.736 0.903 0.833
PNI, prognostic nutritional index

The significance of bold data: P < 0.05

Fig. 3  The receiver-operating characteristic curves. (A) ROC for GCS; (B) ROC for Hematoma volume; (D) ROC for SD of BG. (ROC, Receiver Operating 
Characteristics Curve; GCS, Glasgow Coma Scale; SD: standard deviation; BG, blood glucose.)

 

Fig. 2  A&B: A 56-year-old male patients with cerebellar hematoma and the CT morphology of the posterior cranial fossa after craniotomy. C&D: A 
62-year-old female patients with cerebellar hematoma and the CT morphology of the fourth ventricle and cisterna ambiens after craniotomy
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univariate and multivariate logistic regression analysis. 
In this current study, BG levels at admission were associ-
ated with a 6-month clinical prognosis only in univariate 
analysis, but no positive findings were found in multivari-
ate logistic regression analysis, similar to the results of 
Chang et al. [6].

Stroke triggers stressful events activated by the sym-
pathetic adrenal medulla axis and the hypothalamic-
pituitary-adrenal axis, where neuroendocrine hormones 
promote glucagon secretion, inhibit insulin release, 
induce insulin resistance, stimulate glycogenolysis and 
gluconogenesis, resulting in elevated BG levels [29, 37]. 
In this mechanism, elevated post-stroke BG levels were 
significantly positively associated with stroke sever-
ity [8]. Stress hyperglycemia not only refers to reactive 
BG increases in non-diabetic patients, but also includes 
stress BG increases in diabetic patients. In addition, acute 
stroke leads to disability of patients, and those patients 
with a history of diabetes fall behind in regular hypo-
glycemic treatment, which is also one of the reasons for 
hyperglycemia at the time of visit, and needs to be identi-
fied by medical personnel.

Elevated BG variability levels can be attributed not only 
to episodes of hyperglycaemia, but also to hypoglycemic 
adverse reactions induced by hyperglycemic drug therapy 
[18]. The use of intensive insulin therapy to control BG 
levels has been widely adopted for stress hyperglycemia 
in the last decade [38]. At the same time, intensive insulin 
therapy for hyperglycemia also faces a lot of opposition, 
and the high incidence of hypoglycemia is a negative fac-
tor [31]. In order to avoid the occurrence of malignant 
hypoglycemia events, modified intensive insulin ther-
apy for stress hyperglycemia is gradually accepted. We 
adopted the modified insulin therapy strategy to control 
the BG in the moderately high range and avoid the occur-
rence of hypoglycemia as much as possible. Therefore, 
the negative association between hyperglycemic vari-
ants and poor outcomes in our cohort may not be fully 
explained by episodic hypoglycemia, at least with a small 
effect. Short-term stress hyperglycemia induced by hem-
orrhagic stroke and neurosurgical operational trauma 
may be the main component of increased BG variability.

High BG variability is considered to be potentially 
related to aggravated oxidative stress. Recently, oxida-
tive stress and inflammatory response have been increas-
ingly recognized as important factors for the secondary 
brain damage after stroke [39, 40]. Although sustained 
hyperglycemia promotes the expression of markers of 
oxidative stress, a fluctuating rise in BG corresponds to 
a more severe oxidative stress response [13, 41]. Oxida-
tive stress and inflammatory responses lead to impair-
ment of endothelial function by increasing apoptosis of 
vascular endothelial cells [20, 30]. And fibroblasts pro-
duced increased cytokines in cells with fluctuating 

glucose levels [42], which may increase the inflamma-
tory response. Increased short-term BG fluctuations are 
thought to damage the innate immune component and 
increase the risk of infection [43]. Ying et al. [44] estab-
lished Sprague-Dawley rats blood glucose fluctuation 
models to analyze the damage to BG variability on car-
diomyocytes. And they found that higher BG variability 
can aggravate of TNF-α levels, and may promote oxida-
tive stress by inhibiting the AKT signaling path, leading 
to cardiac tissue fibrosis.

Excessive fluctuation on BG level has a severe poor 
impact on mitochondrial activity of neuronal cells, 
resulting in mitochondrial stress and significant expres-
sion of apoptosis genes [45]. Okazaki et al. [46] reported 
the effect of increased BG variability on poor neurologi-
cal prognosis in patients with aneurysmal subarachnoid 
hemorrhage. In their study, the rate of adverse neuro-
logical prognosis increased significantly with the SD of 
BG. Kurtz et al. [47] retrospectively analyzed the data 
of patients with subarachnoid hemorrhage, and found 
that increased BG variability was associated with brain 
oxygen metabolism disorders and increased mortality. 
Then, they speculated that reducing BG variability could 
improve human brain tissue metabolism and prognosis 
in patients with subarachnoid hemorrhagic.

For the first time, we report BG variability as an inde-
pendent predictor of 6-month prognosis in SCH patients 
undergoing neurosurgical operation. Our study has limi-
tations that should be mentioned. First, it is a small, ret-
rospective study done in one single center. Second, Only 
those patients who received surgical treatment were ret-
rospectively analyzed, and patients receiving conservative 
treatment in neurology and neurosurgery were excluded, 
this may have partially limited the range of results. Third, 
although some patients used corticosteroids in the short-
term for brain edema, the effects of corticosteroids on 
BG levels were not analyzed. Fourth, due to the limita-
tions of the retrospective study, we do not have sufficient 
data to confirm the specific occurrence of stress hyper-
glycemia or the data of patients with underlying diabetes. 
Fifth, as a clinical observational study, specific patho-
logical mechanisms cannot be provided. The multicenter, 
prospective, and randomized controlled clinical studies 
should be conducted to further understand BG variability 
and provide clinical countermeasures.

Conclusion
High BG Variability is independently correlated with the 
6-month poor outcomes in patients with SCH undergo-
ing surgical operation.
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