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Abstract

tensor imaging

Background Our intent was to explore the mediating role of interstitial free water (FW) linking deep medullary vein
(DMV) score to white matter hyperintensity (WMH) volume.

Methods Our research team conducted a forward-looking analysis of initial clinical and imaging information
gathered from 125 patients with cerebral small vessel disease. We identified six anatomic DMV regions on
susceptibility weighted imaging (SWI) studies. Each region earned a score of 0-3, determined by the visual conditions
of vessels, summing all six to generate a DMV score. We utilized fluid-attenuated inversion recovery (FLAIR) sequences
to measure the volume of WMH. Additionally, we employed diffusion tensor imaging (DTl) to assess FW value.

Results DMV score significantly positively correlated with FW value and with WMH volume (p < 0.05), and value of
FW positively correlated with WMH volume (p < 0.05). The indirect effect of DMV score on WMH volume was mediated
by FW (3=0.281, 95% confidence interval [Cl]: 0.178-0.388), whether adjusted for age and gender (3=0.142, 95% Cl:
0.058-0.240) or for age, gender and vascular risk factors (3=0.141, 95% Cl: 0.054-0.249).

Conclusion DMV score correlate with WMH volume by virtue of FW increases in white matter.
Keywords Deep medullary vein, White matter hyperintensity, Free water, Susceptibility weighted imaging, Diffusion
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Introduction

White matter hyperintensity (WMH) is important imag-
ing markers of cerebral small vessel disease, typically
seen as patchy rarefaction on fluid-attenuated inversion
recovery (FLAIR) sequences [1]. Studies have shown that
such occurrences and their progression are associated
with various neurologic disorders, particularly cognitive
impairment and stroke [2, 3]. The pathogenesis of WMH
is a complex process closely related to white matter dam-
age, involving inflammatory factor release and abnormal
blood-brain barrier function [4, 5]. Some study outcomes
also suggest that dysfunction within the venous system
may be pivotal in WMH emergence and progression [6].
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Deep medullary vein (DMV) are primarily situated
around the lateral ventricles, where they are aligned per-
pendicularly and appear as vertical bands of hypointense
signals on susceptibility weighted imaging (SWI) [7].
These vessels serve to drain venous blood from periven-
tricular and corona radiata regions into the deep cerebral
venous system [8]. Recent data has revealed an associa-
tion between diminished DMV visibility on SWI images
and higher WMH burden [9], implicating DMV dysfunc-
tion as an important dynamic in the onset and evolution
of WMH. However, the specific pathways entailed remain
unclear. Previous research indicates that DMV narrowing
due to venous collagen deposition may cause venous out-
flow obstruction, thus increasing interstitial fluid content
[10]. The latter may lead to disruption of white matter
fiber tracts and ineffective clearance of harmful metabo-
lites, culminating in WMH. We hypothesize that DMV
dysfunction exacerbates white matter damage by increas-
ing interstitial fluid content.

Therefore, we used diffusion tensor imaging (DTI) to
gauge free water (FW) value, reflecting interstitial fluid
content of the brain. We also determined DMV score as
DMV functional indices. Our objective was to explore
the interrelations between DMV score, FW value, and
WMH volume.

Materials and methods

Patient population

Clinical and imaging data were collected from 125 indi-
viduals with cerebral small vessel disease between March
and September 2023. Inclusion criteria were as follows:
(1) Be over 40 years of age; (2) magnetic resonance imag-
ing (MRI) studies adhering to Standards for Reporting
Vascular Changes on Neuroimaging guidelines; (3) at
least one vascular risk factors, such as tobacco use, diabe-
tes, high blood pressure, or abnormal blood lipid levels.
The following were grounds for exclusion: (1) incomplete
medical clinical data; (2) Presence of secondary demy-
elinating lesions (e.g., those caused by metabolic issues,
toxins, or infections); (3) Other brain-related conditions
such as tumors, physical injuries, bleeding within the
brain, acute infarctions, etc.; (4): exhibit significant arti-
facts that could interfere with the accurate assessment of
DMVs.

Magnetic resonance imaging protocol

All patients underwent multimodal MRI studies, includ-
ing 3D T1- (T1WI) and T2-weighted (T2WI) imaging,
FLAIR sequences, SWI, and DTI, using a 1.5 Tesla scan-
ner (MAGNETOM Aera, Syngo Platform VD13A; Sie-
mens Healthcare, Erlangen, Germany) equipped with
an eight-channel phased-array head coil. Parameters for
FLAIR were as follows: repetition time=6500 ms; echo
time=95 ms; flip angle=140°; slice thickness=5 mm;
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intersection gap=1.5 mm; field of view=23x23 cm?
and matrix=256x256. For SWI, parameters were
the following: repetition time=54 ms; echo time=40
ms; flip angle=15° slice thickness=2 mm; intersec-
tion gap=04 mm; field of view=23x23 cm’ and
matrix=256x256. DTI parameters were as follows:
repetition time=3600 ms; echo time=95 ms; field of
view=23x23 cm? matrix=128x128; diffusion direc-
tions=30; and b values=0, 1,000, and 2,000 s/mm?.

Deep medullary vein score

During the image review process, two experienced neu-
roradiologists independently evaluated DMV score.
Scoring of DMV was done on SWI sequences, selecting
five consecutive slices at level of lateral ventricles (within
basal ganglia) until the ventricles disappeared. Most of
DMV were thereby included. We then divided the slices
into frontal, parietal, and occipital lobes bilaterally, for
a total of six anatomic regions [11] (Fig. 1). Each region
was scored from O to 3, based on DMV signal continuity:
0, signals continuous, clear, and uniform; 1, signals still
continuous but uneven; 2, weak, punctate, and discon-
tinuous signals; or 3, no DMV signals. The DMV score
(range, 0—18) was generated by adding score of all six
regions. (Fig. 2).

White matter hyperintensity volume

We measured WMH volume quantitatively on FLAIR
images. These images were first converted to the Neuro-
imaging Informatics Technology Initiative (NIfTT) format
using MRIcron software, which is available at https://
www.nitrc.org/projects/mricron. The skulls had been
stripped from images using the FSL BET function. After
matching of 3D T1WI and FLAIR images, we obtained
WMH volume using the FSL BIANCA function. All pro-
cessed images were subjected to neuroradiologic review
and manual correction, aided by ITK-SNAP software
(http://itksnap.org).

FW in white matter

DTI images were first preprocessed, which largely
entailed denoising, artifact removal, and correcting echo
planar imaging distortion. Next, we mapped extracellu-
lar FW using DIPY software (https://dipy.org) in a FW
elimination two-compartmental model [12]. 3D T1WI
images were further registered as b=0 (b0) images,
and mean white matter FW value was ultimately calcu-
lated from each patient’s white matter mask, segmented
through FSL FAST using co-registered 3D T1WI images.
FW value ranged from 0 to 1, corresponding with higher
extracellular FW content as value increased.
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Fig. 1 A schematic diagram of the DMVs in different brain regions. (A) DMVs in the frontal lobe region; (B) DMVs in the parietal region; (C) DMVs in the

occipital region. DMV, deep medullary vein

Fig. 2 lllustration of deep medullary vein (DMV) scoring system: (A) signals continuous, clear, and uniform (DMV score =0); (B) signals continuous but
uneven (DMV score=1); (C) weak, punctate, and discontinuous signals (DMV score=2); and (D) no visible DMV signal (DMV score =3)

Data analysis

In our statistical analysis, we represented categorical
variables as percentages. For continuous variables, we
used meantstandard deviation for normally distributed
data, and median with interquartile ranges (IQRs) for
non-parametric data. To analyze interrelations of DMV
score, FW value, and WMH volume, the Spearman cor-
relation coefficient was applied. We conducted all statis-
tical analyses using SPSS version 26, setting significance
at p<0.05. The PROCESS macro [Model 4, a simple
mediation effect model where an independent variable
(predictor) influences a dependent variable (outcome
variable) through a mediator; https://afthayes.com] was

also engaged to analyze the mediating effect of FW on
DMV score and WMH volume (Fig. 3). In Model 1, pre-
dictor, mediator, and outcome variables were DMV score,
FW, and WMH volume, respectively. We adjusted for age
and gender in Model 2, whereas Model 3 was adjusted for
age, gender, hypertension, diabetes and hyperlipidemia.

Results

Baseline clinical and imaging characteristics of the study
population (N=125) are shown in Table 1. There were 58
women (46.4%), and mean age was 60111 years. Median
DMYV score was 3 (IQR: 1-8), mean WMH volume was
12.26+12.63 ml, and mean FW value was 0.24+0.01.
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Fig. 3 Mediation model to explore interrelations between deep medullary vein (DMV) score, free water (FW), and white matter hyperintensity (WMH)

volume

Table 1 Baseline characteristics of patient population (N=125)
Variable

Age, years 6011
Gender, female 58 (46.4)
Hypertension 68 (54.4)
Diabetes 22(17.7)
Hyperlipidemia 34 (27.2)
Smoking 29 (23.2)
DMV score, median (IQR) 3(1-8)

FW 0.24+0.01
WMH volume, ml 12261263

Data presented as n(%) or meantstandard deviation, unless otherwise specified

DMV, deep medullary vein; FW, free water; IQR, interquartile range; WMH, white
matter hyperintensity

Inter-reader agreement for evaluation of deep medullary
vein score

DMV scoring was independently performed by two neu-
roradiologists blinded to clinical and imaging data. The
inter-reader intraclass correlation coefficients (ICCs) for
the DMV score was 0.91.

DMV score and FW

Spearman correlation analysis indicated a positive corre-
lation between DMV score and FW (r=0.570; p<0.001)
(Fig. 4A). DMV score correlated significantly with FW
in all test environments (Model 1: p=0.610; Model 2,
adjusted for age and gender : =0.405; Model 3, adjusted
for age, gender and hypertension/diabetes/hyperlipid-
emia: $=0.401) (all p<0.05).
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Fig. 4 Interrelations between DMV score, FW, and WMH volume

DMV, deep medullary vein; FW, free water; WMH, white matter hyperintensity
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FW score and WMH volume

Spearman correlation analysis likewise showed a positive
correlation between FW and WMH volume (r=0.565;
p<0.001) (Fig. 4B). Again, DMV score regularly corre-
lated with FW (Model 1: $=0.460; Model 2, adjusted for
age and gender: f=0.351; Model 3, adjusted for age, gen-
der and hypertension/diabetes/hyperlipidemia: $=0.351)
(all p<0.05).

DMV score and WMH volume

Spearman correlation analysis revealed a positive correla-
tion between FW and WMH volume (r=0.473; p<0.001)
(Fig. 4C), higher DMV score correlating with higher
WMH volume.

Mediation analysis of DMV score, FW, and WMH volume
The indirect effect of DMV score on WMH volume
was clearly mediated by FW in our analyses of Model 1
(B=0.281, 95% confidence interval [CI]: 0.178-0.388);
Model 2, adjusted for age and gender(=0.142, 95% CI:
0.058-0.240); and Model 3, adjusted for age, gender,
hypertension, diabetes and hyperlipidemia (f=0.141,
95% CI: 0.054-0.249) (Table 2).

Discussion

Outcomes of the present study confirm a relation
between DMV score and WMH volume that is mediated
by value of FW. This mediating effect is independent of
age, gender, hypertension, diabetes and hyperlipidemia,
indicating a link between DMV dysfunction, increased
interstitial FW content, and increased WMH volume.

SWI is an MRI imaging technology that is particularly
sensitive to paramagnetic materials. The concentration of
paramagnetic deoxyhemoglobin in human venous blood
is high, allowing clear delineation of veins on SW1I stud-
ies. Veins with smooth walls, unobstructed drainage, and
high flow rates are clearly and continuously displayed by
SWI. Otherwise, signaling may be discontinuous or even
disappear. SWT is thus a proven mode for venous hemo-
dynamic status assessment [13].

Diminished visibility of DMV on SWI sequences
reflects luminal narrowing due to collagen deposition
within venous walls [14]. As a result, there is increased
vascular permeability, releasing more lytic material into
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the interstitium. Prolonged narrowing also leads to ele-
vated venous pressure so that drainage of venous blood
and interstitial fluid is impaired. Abnormally accumu-
lating interstitial fluid subsequently tends to coalesce
in perivascular spaces, producing interstitial edema.
Furthermore, such increases in interstitial fluid hinder
effective clearance of harmful metabolic substances (i.e.,
amyloid-p protein and plasma proteins) [15, 16]. These
harmful metabolites are toxic to myelin and axons, inflict-
ing neuronal damage but also triggering neuroinflamma-
tory responses and thereby exacerbating interstitial fluid
accumulation in the brain [17]. Interstitial edema appears
as hyperintense signal on FLAIR sequences. The higher
the venous pressure, the more severe interstitial edema
becomes, resulting in broader areas of hyperintensity and
consequently greater WMH volume.

Cerebral blood supply ordinarily is stable and non-
pulsatile, maintained through a balance in cerebrospinal
fluid production and cerebral venous drainage [18]. How-
ever, vascular regulation declines with age and is increas-
ingly marked by blood flow fluctuations. Prolonged
fluctuations gradually raise pressures within DMYVs,
reducing blood flow. The resultant vasogenic edema and
increased extracellular fluid [19] subsequently promote
collagen deposition in venous walls, prompting a vicious
cycle of DMV luminal narrowing and venous pressure
elevation.

Although prior studies of WMH volume have shown
associations with age and vascular risk factors [20, 21],
significance was consistently demonstrated in our media-
tion analyses, which adjusted for age, hypertension, dia-
betes and hyperlipidemia. This affirms the reliability
of our data and suggests that increased interstitial fluid
secondary to DMV dysfunction may precede the onset of
WMH.

There are several study limitations to concede. First,
this patient population was drawn from a single center
only. Going forward, we intend to acquire a larger sam-
pling for our research through multicenter recruitment.
Perfusion images were also lacking and would be useful
to clarify the association between WMH perfusion and
DMV dysfunction. Finally, the infeasibility of long-term
follow-up during this particular investigation afforded

Table 2 Results of mediation analyses for DMV score, FW, and WMH volume

Path a Path b Path c-direct effect Path ab-indirect effect
B (95% CI) B (95% CI) B (95% CI) B (95% CI)
Model 1 0.610 (0.468,0.752)* 0460 (0.272,0.648 0.146 (-0.042,0.334) 0.281(0.178,0.388)*
Model 2 0.405 (0.259, 0.552)* 0.351 (0.143, 0.559)* 0.100 (-0.088, 0.288) 0.142 (0.058, 0.240)*
Model 3 0.401 (0.254,0.549)* 0.351(0.141,0.562)* 0.094 (-0.095,0.284) 0.141 (0.054,0.249)*
*p<0.05

Model 1: DMV score serving as predictor, FW as mediator, and WMH volume as outcome; Model 2: Model 1, adjusted for age and gender; Model 3: Model 1, adjusted

for age, gender, hypertension, Diabetes and hyperlipidemia

Cl, confidence interval; DMV, deep medullary vein; FW, free water; WMH, white matter hyperintensity
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no real understanding of the dynamic DMV changes
involved.

Conclusions

Our analysis has revealed a significant relationship
between DMV visibility and WMH volume. Importantly,
this association appears to be mediated by the amount of
FW present in white matter. This observation implicates
venous-side pathogenic mechanisms in the WMH evolu-
tionary process.

Abbreviations
FW Free water

DMV Deep medullary vein

WMH  White matter hyperintensity

FLAIR  Fluid attenuated inversion recovery
DTl Diffusion tensor imaging

SWI Susceptibility-weighted imaging
MRI Magnetic resonance imaging
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