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Abstract
Background  Patients with acute large vessel occlusion stroke (ALVOS) may exhibit considerable variability in clinical 
outcomes following mechanical thrombectomy (MT). This study aimed to develop a novel statistical model predicting 
functional independence three months post-endovascular treatment for acute stroke and validate its performance 
within the cohort.

Method  Consecutive patients undergoing endovascular treatment for acute stroke with large vessel occlusion were 
randomly divided into a modeling group and a validation group in a 7:3 ratio. Independent risk factors were identified 
through LASSO regression and multivariate logistic regression analyses, leading to the development of a prognostic 
model whose performance was rigorously validated.

Results  A total of 913 patients were screened, with 893 cases included. The modeling group comprised 625 cases, 
and the validation group included 268 cases. Identified independent factors for adverse outcomes after endovascular 
treatment of acute ischemic stroke (AIS) were pneumonia (OR = 4.517, 95% CI = 2.916–7.101, P < 0.001), mechanical 
ventilation (OR = 2.449, 95% CI = 1.475–5.148, P = 0.001), admission GCS ≥ 8 (OR = 0.365, 95% CI = 0.167–0.745, 
P = 0.008), dysphagia (OR = 2.074, 95% CI = 1.375–3.126, P < 0.001), and 72-hour highest Na ≥ 145 (OR = 2.794, 95% 
CI = 1.508–5.439, P = 0.002), along with intracranial hemorrhage (OR = 2.453, 95% CI = 1.408–4.396, P = 0.002). These 
factors were illustrated in a PMGDNI column chart. The area under the ROC curve for the modeling group was 82.5% 
(95% CI = 0.793–0.857), and for the validation group, it was 83.7% (95% CI = 0.789–0.885). The Hosmer-Lemeshow test 
indicates that there is no statistically significant difference (P > 0.05) between the predicted and actual probabilities of 
adverse outcomes. The clinical decision curve demonstrated optimal net benefits at thresholds of 0.30-1.00 and 0.25-
1.00 for both training and validation sets, indicating effective clinical efficacy within these probability ranges.
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Introduction
Acute ischemic stroke (AIS) stands as the leading cause 
of death and functional disability worldwide [1, 2]. More 
than 45.5% of deaths from stroke, and 71.7% of living 
ability lost because of stroke were in people younger than 
75 years [2]. However, with the continuous development 
of clinical medicine, significant improvements have been 
made, especially through methods such as thrombolysis 
and endovascular thrombectomy, leading to a notice-
able decrease in death and disability rates [3]. Never-
theless, for stroke patients with large vessel occlusion 
(LVO), long-term disability still affects approximately 
50% of individuals [4]. Currently, endovascular therapy 
(EVT) has been established as an effective method for 
treating acute large vessel occlusion stroke (ALVOS) [5, 
6], with efficient recanalization of occluded vessels being 
a key benefit for ALVOS patients. However, in clinical 
practice, there remain patients whose clinical outcomes 
cannot be improved even after successful recanalization 
of occluded vessels and restoration of blood flow [7, 8]. 
Therefore, the development of a feasible LVO EVT result 
prediction model has become a top priority.

Previous studies have identified multiple predictors of 
key clinical outcomes after stroke, including complica-
tions, clinical examination results, brain edema, reperfu-
sion injury, and high scores on the NIHSS scale [9–12]. 
Based on these factors, numerous prediction models 
have been developed to predict the prognosis of indi-
vidual patients receiving EVT treatment. However, due 
to the small sample size and complex data collection of 
these models, and the limited inclusion of factors such 
as anterior circulation occlusion, their practical perfor-
mance is suboptimal, and they fail to address the com-
plexity of various parameters that may influence the 
clinical outcomes of AIS endovascular treatment. As a 
result, no model has emerged as the preferred choice for 
EVT patients [9, 13].

With the increasing prevalence of machine learning in 
recent years, the utilization of machine learning mod-
els in clinical data analysis has become more common. 
However, the presence of biased machine-learning mod-
els can potentially lead to a reduction in accuracy [14]. 
While machine learning offers significant benefits, it is 
also important to acknowledge its limitations. It may not 
always outperform traditional techniques in all scenarios 
[15]. Therefore, it is essential to recognize the strengths 
and weaknesses of both machine learning and traditional 

models and utilize them in a more balanced and judicious 
manner for clinical data applications.

As such, in pursuit of aiding treatment strategies 
and clinical decision-making, our research focuses on 
patients with acute large vessel occlusion stroke, aiming 
to explore the risk factors that may impact the prognosis 
of these patients after endovascular treatment, and con-
struct a predictive model. Clinicians can utilize predictive 
models to prioritize patients at high risk and administer 
early intervention and treatment, consequently diminish-
ing the incidence of adverse outcomes.

Methods
Participants
From January 2021 to August 2023, consecutive acute 
stroke patients at three hospitals of Taizhou Enze Medi-
cal Center (Group) were retrospectively included in 
this study. A total of 913 patients were initially chosen, 
but after applying inclusion and exclusion criteria, 893 
patients were ultimately included. The patients were ran-
domly allocated in a 7:3 ratio, with 625 patients being 
assigned to the training module group and 268 patients 
to the validation group. The patients were categorized 
into a good prognosis group (mRS < 3) and a poor prog-
nosis group (mRS ≥ 3) based on their functional indepen-
dence [16], as illustrated in Fig. 1. The modified Rankin 
Scale (mRS) score was obtained after 90 days of onset 
through telephone and outpatient follow-up from expe-
rienced neurologists. This study was approved by the 
Ethics Committee of Enze Hospital, Taizhou Enze Medi-
cal Center (Group) (K20221104), and was conducted by 
following the Helsinki Declaration and the law of China. 
The inclusion criteria required patients to be 18 years old 
or above, diagnosed with acute cerebral infarction con-
firmed via CTP or CT, and have large vessel occlusion 
necessitating endovascular treatment. Exclusion criteria 
included patients who had not consented to endovascu-
lar treatment, did not fulfill the criteria for endovascular 
treatment, had incomplete medical record information, 
or had an MRS score > 3 points before admission.

Study procedure
Collect clinical data of cases through the hospital medi-
cal record system, including the following information:1.
General information: age, gender, onset time, admission 
temperature, admission blood pressure, underlying dis-
eases, etc.2. Clinical data: (a) Laboratory examination: 

Conclusion  We have successfully developed a new predictive model enhancing the accuracy of prognostic 
assessments for acute ischemic stroke following EVT. It provides an individual, visual, and precise prediction of the risk 
probability of a 90-day unfavorable outcome.
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White blood cell count, lymphocyte count, neutrophil 
count, platelets, hemoglobin, CRP, PCT, triglycerides, 
creatinine, blood glucose, coagulation function, inter-
national standardized ratio, activated partial prothrom-
bin time, fibrinogen, thrombin time, D-dimer, albumin, 
etc. upon admission and after 72  h. Electrolyte changes 
were rechecked. (b) Imaging examination: blockage of 
blood vessels, cerebral hemorrhage, etc.3. Intervention 
and scoring: admission Glasgow Coma Scale (GCS) score 
[17], National Institutes of Health Stroke Scale (NIHSS) 
score, 90-day mRS score, pneumonia, mechanical ven-
tilation, swallowing dysfunction, drug thrombolysis, 
etc. Please note that the above information is collected 
through the hospital’s medical record system.

Statistical method
Statistical analysis was performed using SPSS 27.0 and 
R language (4.3.2) was utilized for data analysis. The 
two-tailed p-value < 0.05 is considered to indicate a sta-
tistically significant difference. χ² tests, t-tests, or Mann-
Whitney U-tests were used to compare the differences 
between baseline characteristics. The optimal threshold 
for predicting clinical prognosis scores was determined 

using the Youden index, which maximizes sensitivity 
and specificity. LASSO regression was performed using 
the “glmnet” package, utilizing 10-fold cross-validation 
and the lambda 1se criterion to select the optimal fac-
tors influencing the outcome. Subsequently, multiple 
forward stepwise logistic regression was conducted on 
the selected factors from the LASSO regression using 
the “glm” package [18]. Using the “rms” package in R, 
nomograms and forest plots were constructed. The 95% 
confidence intervals (CI) were estimated through 1,000 
bootstrap samples. The sample was randomly divided 
into model and validation groups in a 7:3 ratio. The dis-
criminative ability of the model and validation cohorts 
was evaluated by plotting the Area Under the Receiver 
Operating Characteristic (ROC) Curve (AUC) using the 
“fbroc” and “rms” packages in R. Calibration tests were 
conducted on both the model and validation groups 
using the Hosmer-Lemeshow test, estimating observed 
vs. predicted rates and computing the P-value for good-
ness-of-fit. Decision Curve Analysis (DCA) was used to 
quantify net benefits across varying threshold probabili-
ties by plotting the DCA for both groups with the “rmda” 
package. Finally, the differences between our model, the 

Fig. 1  Study flow diagram
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NAC model, the COACHS model, the NADE model, and 
the START model were compared through an analysis of 
the ROC curves.

Results
The final cohort consisted of 893 patients with a median 
age of 70 years (interquartile range: 60–77 years). Among 
them, 61.5% were male and 38.5% were female. The 
training set included 625 cases, while the validation set 
included 268 cases (Table 1).

LASSO regression identified 28 influencing fac-
tors (Fig.  2), See Supplementary Fig.  1 for the regres-
sion system. Further analysis using multivariate logistic 
regression is presented below: pneumonia (OR = 4.517, 
95% CI = 2.916–7.101, p < 0.001), mechanical venti-
lation (OR = 2.449, 95% CI = 1.475–5.148, p = 0.001), 
admission GCS ≥ 8 (OR = 0.365, 95% CI = 0.167–0.745, 
p = 0.008), dysphagia (OR = 2.074, 95% CI = 1.375–3.126, 
p < 0.001), and 72-hour highest sodium ≥ 145 (OR = 2.794, 
95% CI = 1.508–5.439, p = 0.002), as well as intracranial 

Table 1  Baseline characteristics of all patients in the training cohort and validation cohort
Variables Total Training cohort Validation cohort P-value

n = 893 n = 625 n = 268
Age (years) 70(60,77) 70(61,77) 68(59,77) 0.041
Gender
Male 549(61.5) 384(61.4) 165(61.6) 0.971
Female 344(38.5) 241(38.6) 103(38.4)
Admission situation
time of onset(hour) 5(3,8) 5(3,8) 5(2.5,9) 0.847
temperature(℃) 36.6(36.5,36.8) 36.6(36.5,36.8) 36.6(36.5,36.8) 0.594
systolic pressure(mmHg) 150(143,167) 150(133,150) 150(135,168) 0.422
GCS 11(9, 12) 11(9, 12) 11(8, 12) 0.133
NIHSS 13(8, 18) 12(8, 18) 13(9, 19) 0.163
disease history
Hypertension 545(61.0) 377(60.3) 168(62.7) 0.506
COPD 22(2.5) 15(4.0) 7(2.6) 0.851
cerebral infarction 167(18.7) 124(19.8) 43(16.0) 0.183
Atrial fibrillation 252(28.2) 183(29.3) 69(25.7) 0.282
heart failure 45(5.0) 31(5.0) 14(5.2) 0.869
myocardial infarction 14(1.6) 11(1.8) 3(1.1) 0.480
Preoperative Laboratory parameters
WBC(10^9/L) 8.2(6.6,10.6) 8.2(6.6,10.5) 8.1(6.5,10.7) 0.729
Neut(10^9/L) 5.9(4.4,8.2) 5.95(4.4,8.2) 5.9(4.3,8.3) 0.555
HB(g/L) 136(124,148) 136(123,148) 137(125,147) 0.662
PLT(10^9/L) 204(166,248) 204(166,248) 204(166,245) 0.857
CL(mmol/L) 104.7(102.2,107,0) 104.8(102.3,107.0) 104.6(102.0,107.0) 0.460
Na(mmol/L) 138.6(136.7,140.4) 138.7(136.8,140.4) 138.4(136.7,140.5) 0.438
Postoperatively Laboratory parameters
WBC(10^9/L) 8.9(7.1,10.9) 8.9(7.1,10.8) 8.9(7.2,11.0) 0.652
Neut(10^9/L) 7.1(5.4,9.2) 7.1(5.3,9.2) 7.2(5.6,9.2) 0.709
HB(g/L) 124(113,136) 124(112,135) 124(115,137) 0.192
PLT(10^9/L) 194(157,232) 193(155,231) 195(161,237) 0.446
72 h high CL(mmol/L) 110.0(107.6,113.0) 110.0(107.5,113.0) 110.0(107.6,113.0) 0.633
72 h high Na(mmol/L) 142.0(140.1,144.5) 142.0(140.2,144.4) 141.9(140.0,144.9) 0.764
temperature(°) 36.5(36.5,37.0) 36.5(36.5,37.0) 36.5(36.5,37.0) 0.395
complication
ICH 175(19.6) 127(20.3) 48(17.9) 0.406
pneumonia 400(44.8) 275(44.0) 125(46.6) 0.467
dysphagia 487(54.5) 336(53.4) 151(56.3) 0.477
operate
mechanical ventilation 275(30.8) 194(31.0) 81(30.2) 0.809
Values were presented as n (%), mean (SD), or median (interquartile range)

GCS Glasgow Coma Scale, NIHSS National Institutes Of Health Stroke Scale, WBC White Blood Cell Count, Neut Neutrophil Count, HB Hemoglobin Concentration, PLT 
Platelet Count, CL Chlorine Ion Level, Na Sodium ion level, COPD Chronic Obstructive Pulmonary Disease, ICH Intracranial Hemorrhage
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hemorrhage (OR = 2.453, 95% CI = 1.408–4.396, p = 0.002). 
These factors were used to construct the final model, and 
the results were presented in the PMGDNI column and 
forest plots (Fig. 3). The sensitivity and specificity of the 
model were predicted using the ROC curve. The area 
under the curve was 82.5% (95% CI [0.793–0.857]) for 
the training set and 83.7% (95% CI [0.789–0.885]) for the 
validation set, indicating high consistency and excellent 
discrimination (Fig. 4).

The model’s discrimination and calibration can be uti-
lized to predict the probability of adverse outcomes fol-
lowing endovascular treatment in acute ischemic stroke 
(Fig.  4). The Hosmer Lemeshow goodness-of-fit tests 
were conducted for the training set (X2 = 2.472, df = 6, 
p-value = 0.8716) and the validation set (X2 = 7.1721, 
df = 6, p-value = 0.3052), indicating good fit in both sets.

The DCA revealed that both the training and validation 
sets obtained maximum net benefits at thresholds rang-
ing from 0.30 to 1.00 and 0.25 to 1.00, indicating good 
clinical efficacy within this probability range(Fig. 4).

Additionally, we compared our models with previously 
reported ones such as the NAC model [19] [the training 
set AUCs of 0.688 (95% CI 0.646–0.730) and validation 
set 0.766 (95% CI 0.707–0.825)], COACHS model [20] 
[the training set AUCs of 0.690 (95% CI 0.648–0.732) and 
validation set 0.777 (95% CI 0.718–0.836)], NADE model 
[21] [the training set AUCs of 0.690 (95% CI 0.646–0.730) 
and validation set 0.770 (95% CI 0.711–0.829)], and 
START model [22] [the training set AUCs of 0.688 (95% 
CI 0.646–0.730) and validation set 0.772 (95% CI 0.714–
0.830)] in Fig.  5, Our model demonstrated a higher 
area under the curve and more color differentiation, 

Fig. 3  Column chart (A) and forest plot (B) of the PMGDNI model for predicting patient functional independence after 90 days

 

Fig. 2  A: Clinical characteristics of LASSO coefficient spectrum. B: Generation of optimal penalty coefficient in LASSO through 10-fold cross-validation 
using λ. The value of λ is chosen based on the mean square error of the training set
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Fig. 4  ROC curves and AUC values for training set (A) and validation set (B). (C) Calibration curves for the training dataset and (D) validation dataset. The 
black dashed line with a 45° angle represents ideal calibration, where the predicted probability equals the observed probability. Analysis of functional 
decision curves for (E) modeling group and (F) validation group predictions. The curves indicate that, when the probabilities range from 0.30 to 1.00 and 
from 0.25 to 1.00, the model predicts higher net benefits of functional strategies over default strategies after 90 days, with “all treatments” (all patients 
receiving positive intervention) and “no treatments” (no patients receiving positive intervention) showing higher net benefits
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indicating superior performance in comparison to the 
aforementioned models.

Discussion
We have constructed a prognosis model for stroke 
patients with large vessel occlusion through six variables. 
The six variables we propose are readily obtainable in 
clinical practice, allowing even primary hospitals to use 
this model to make simple predictions for stroke patients. 
In comparison with other models [19–21], we found that 
the PMGDNI model demonstrates superior predictive 
power.

In our study, we found that in stroke patients with large 
vessel occlusion, despite endovascular treatment and 
active intervention in some cases, only 35.7% of patients 
achieved good functional performance (mRS < 3) after 
90 days. This is similar to a study conducted in 2015 
where 34.3% of patients showed good functional perfor-
mance [23], slightly better than the Netherlands’ multi-
center collaboration which had a result of 32.6% [24], but 
much lower than the 46% achieved in the Goyal M meta-
analysis [4]. In the meta-analysis, we found the rates of 
high functional independence outcomes were as follows: 
32.6% in MR CLEAN [25], 53.0% in ESCAPE [26], 60% 
in SWIFT PRIME [27], 43.7% in REVASCAT [28], and 
71% in EXTEND-IA [29]. The reason for these high rates 
can likely be attributed to the relatively small sample 
sizes in these studies and the inclusion of only patients 
who underwent thrombectomy within 8  h of symptom 
onset. Despite continued development and improvement 
of endovascular treatment techniques, there has been no 
significant improvement in the prognosis of large vessel 
occlusion in recent years. Furthermore, these findings 
highlight the importance of predicting the prognosis of 
stroke patients with large vessel occlusion.

Pneumonia
We have analyzed several factors contributing to adverse 
outcomes through modeling and have found pneumo-
nia to be the most influential factor. Currently, infection 
has been proven to be the primary cause of morbidity 
and mortality in patients with acute central nervous sys-
tem injury [10]. Secondary immunodeficiency syndrome 
(CIDS) after a stroke significantly increases susceptibil-
ity to infection. Simultaneously, infection hinders the 
recovery of neurological function and increases both the 
incidence rate and mortality [10]. Pneumonia, the most 
common complication of ischemic stroke complicated 
with infection, shows a significant change in its inci-
dence rate. Related literature reports that the incidence 
rate of stroke-related pneumonia (SAP) is 4.1–56.6% in 
the NICU and 17–50% in the MICU [30]. We observed 
a high incidence of pneumonia, which may be related 
to the presence of large vessel occlusion in the included 
population, as well as to the non-standard definition of 
post-stroke pneumonia.

Mechanical ventilation and swallowing dysfunction
We have observed that patients with large vessel occlu-
sion who require mechanical ventilation and experience 
swallowing dysfunction tend to have a worse prognosis, 
with incidence rates of adverse outcomes at about 88.0% 
and 80.5%, respectively. The incidence rates of pneu-
monia in these cases are 66.9% and 62.6%, although the 
statistical data available to us do not clarify the exact 
relationship between these time factors. However, it is 
not difficult to infer a strong link between pneumonia, 
mechanical ventilation, and swallowing dysfunction. 
Previous studies have also indicated that the incidence 
of pneumonia is connected to dysphagia and mechani-
cal ventilation [31]. While there may be variations in how 

Fig. 5  Comparison of Model (A) Modeling Group and (B) Validation Group with Other Models. The DeLong test revealed the following results: In the train-
ing set, model A compared to models B, C, D, and E all showed P < 0.01. In the validation set: the comparison of model A with model B yielded a P value 
of 0.01; model A versus model C, a P value of 0.02; model A versus model D, a P value of 0.03; and model A versus model E, a P value of 0.04
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doctors evaluate the need for mechanical ventilation, 
a survey study has shown that the in-hospital mortality 
rate for stroke patients requiring mechanical ventilation 
can be as high as 52.7% [32]. Notably, our incidence of 
pneumonia is higher than the reported 40% incidence 
in stroke patients requiring mechanical ventilation in 
France [33]. Although swallowing dysfunction may 
increase the risk of reflux and aspiration, it is important 
to note that aspiration alone is not always sufficient to 
cause pneumonia, as around half of healthy adults may 
inhale during sleep without developing pneumonia [34]. 
Interestingly, previous research has indicated that pneu-
monia does not necessarily impact short-term mortality 
[31]; however, the presence of pneumonia, mechanical 
ventilation, and swallowing dysfunction may result in 
prolonged ICU hospitalization, leading to a poorer prog-
nosis and higher mortality rates [33, 35].

Intracranial hemorrhage
Intracranial hemorrhage (ICH) is a common and highly 
dangerous complication after surgery, occurring in 
approximately 40% of patients with anterior circulation 
occlusion of EVT [36]. It can result in adverse outcomes 
and increased mortality, ultimately reducing the risk-
benefit ratio of endovascular treatment [37]. Although 
anterior circulation obstruction accounted for approxi-
mately 90.3% in our study, the incidence of bleeding in 
our cohort was much lower at 19.6%. Previous studies 
have shown a positive correlation between the number 
of times a stent thrombus retrieval device (SR) is passed 
and the increased risk of symptomatic intracerebral hem-
orrhage (SICH) [38, 39]. However, it is unclear whether 
such factors contribute to the differences in bleeding 
incidence. Nonetheless, there is mounting evidence that 
the occurrence of intracranial hemorrhage (ICH) or the 
possibility of early hemorrhagic transformation (HT) 
both significantly impacts the prognosis of these patients, 
leading to higher mortality and disability rates [40–42].

Blood sodium
Blood sodium, as the most common electrolyte, plays a 
crucial role in maintaining bodily function. Hyperna-
tremia was defined as two daily serum sodium values 
exceeding 145 mmol/l, which coincides precisely with the 
threshold used in our study. This condition was identified 
as an independent risk factor influencing the prognosis of 
endovascular treatment for large vessel occlusions. How-
ever, previous studies have indicated that hyponatremia 
is associated with a higher mortality rate and poorer clin-
ical outcomes in stroke patients [43, 44]. There is limited 
research on high sodium levels, and hypertonic agents 
such as mannitol and hypertonic saline (HS) have been 
shown to reduce total brain water content and intra-
cranial pressure, making them the primary drugs for 

treatment [45]. Hypertonic saline (HS) appears to act as 
a protective agent against brain damage. Although our 
cohort did not exclude patients using HS, this observa-
tion seems to contradict our results. Hypertonic saline 
is a complex treatment option for patients with elevated 
intracranial pressure levels. Its mechanism of action 
includes decreasing cell volume by extracting fluid from 
the brain and improving blood viscosity and rheology, 
leading to a decrease in brain blood volume, among 
other effects [46]. Several retrospective studies have sug-
gested that hypernatremia is independently associated 
with an increased risk of death in patients with severe 
traumatic brain injury [47–49]. In this section of the 
study, the definition of high sodium values is very simi-
lar to our research. In animal experiments, it was found 
that hypernatremia caused by HS infusion after ischemia 
exacerbates the cortical infarct volume of transient focal 
cerebral ischemia [50]. However, we still cannot confirm 
a direct association between hypernatremia and brain 
damage.

The glasgow coma scale (GCS)
The Glasgow Coma Scale (GCS) is the most widely used 
behavioral measure for assessing the severity of acute 
traumatic brain injury (TBI). A GCS total score of 8 is 
commonly used as the threshold to define “coma” for 
surgical purposes [51]。 Interestingly, we also identi-
fied 8 as the optimal cutoff value using the Youden index. 
Although there is currently no definitive GCS score 
threshold to differentiate stroke patient outcomes, the 
impact of GCS scores on stroke prognosis has been sup-
ported by numerous studies [52, 53]. Marielle K. in their 
study pointed out that a GCS score ≤ 8 is associated with 
a higher 30-day mortality rate among stroke patients [52].

Limitations
Our study has several limitations. First, it is a retrospec-
tive analysis involving a limited number of patients, 
which necessitates prospective studies to validate the 
model’s performance. Second, we lack external validation 
to enhance the accuracy of our model. Third, for some 
patients, we obtained the mRS scores through telephone 
interviews, which may introduce bias in the scoring. 
Additionally, we only recorded HAP without differen-
tiating between SPA and VPA. Although we included as 
much clinical data as possible, we cannot guarantee that 
there are no new potential independent factors that we 
may have overlooked.

Conclusion
The model constructed using six independent risk fac-
tors—pneumonia, mechanical ventilation, admis-
sion GCS, swallowing difficulties, and intracranial 
hemorrhage—demonstrates a high predictive value for 
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outcomes following endovascular treatment of acute 
ischemic stroke.
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blood pressure, 72 h High Na+: Maximum serum sodium level within 72 h 
post-admission, 72 h Low Cl: Minimum serum chloride level within 72 h 
post-admission, GCS: Glasgow Coma Scale score at admission, NIHSS: 
NIHSS score at admission).
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