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10], which can manage but not cure the condition. Pre-
vious studies have found that T2DM is associated with 
genetic and non-genetic factors, such as lifestyle and 
stress [11, 12]. It is also associated with various diseases, 
such as non-alcoholic fatty liver disease [13], inflamma-
tory bowel disease [14], and schizophrenia [15].

Central nervous system (CNS) tumours are a group 
of tumours originating from cells within or around the 
brain, including primary and metastatic tumours. These 
tumours have very high morbidity and mortality rates 
[16] and affect both adults and children; they are a lead-
ing cause of death in affected children [17, 18]. The main 
treatment modalities for CNS tumours include surgery, 
radiotherapy, and drug therapy [19]. While benign CNS 
tumours typically have good results with standard treat-
ment, malignant CNS tumours have a poor prognosis 
[20, 21]. Previous studies have found links between CNS 
tumours and factors such as intestinal microbiota [22] 

Introduction
Type 2 diabetes mellitus (T2DM) is a chronic meta-
bolic disease characterised by impaired blood glucose 
regulation [1] and systemic complications [2]. In recent 
years, the incidence of T2DM has gradually increased 
[3], affecting not only middle-aged and older people but 
also young children [4–6]. The primary concern with 
T2DM is its complications [7], particularly cardiovascu-
lar disease, which is the leading cause of death in affected 
patients [8]. Current treatments for T2DM include life-
style modifications and pharmacological therapies [1, 9, 
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and obesity [23]; however, these studies were inconclu-
sive. Advances in genomics are gradually uncovering the 
complexities of CNS tumours [24], leading to some prog-
ress in treatment, but substantial breakthroughs are yet 
to be achieved.

Type 2 diabetes mellitus is associated with a wide range 
of systemic disorders and has a role in various gastroin-
testinal diseases [25] and psychiatric disorders [26]. Some 
studies have also found a link between T2DM and certain 
CNS tumours. One retrospective study found no asso-
ciation between T2DM and glioblastoma development, 
but it was found that some association between level 
of glycaemic control and survival time in glioblastoma 
patients [27]. Type 2 diabetes and obesity are indepen-
dent risk factors for the prognosis of high-grade gliomas 
[28]. However, the roles of T2DM and glucose-related 
factors in the development of glioblastomas remain 
understudied.

A previous study reported a negative correlation 
between T2DM and meningiomas [29], particularly in 
female patients. A retrospective study identified T2DM 
as an independent factor affecting the length of postop-
erative survival in patients with meningiomas [30]; how-
ever, the relationship between T2DM and meningiomas 
has not been extensively studied. Additionally, one study 
found that a high mortality rate in patients with cranio-
pharyngiomas was associated with T2DM [31], but the 
cause was not determined.

With continuous progress in genome-wide association 
studies (GWAS), millions of individual genetic variants 
have been sequenced [32], providing a valuable resource 
for conducting genotypic studies. Consequently, MR, 
a causal inference method using nucleotide polymor-
phisms as instrumental variables, has emerged. Exploring 
the relationship between exposure and outcome using 
MR has the distinct advantage of effectively avoiding 
interference from confounding factors [33].

Previous observational studies have identified strong 
associations between T2DM, related glycaemic fac-
tors, and CNS tumours [34]. To clarify these relation-
ships, we utilised MR and co-localisation. We examined 
T2DM, fasting glucose, fasting insulin, glycated haemo-
globin, and insulin-like growth factor-1 in relation to six 
common CNS tumours: glioblastoma, benign menin-
gioma, malignant meningioma, benign cranial nerve 
tumours, pituitary tumours, craniopharyngiomas, and 
benign spinal cord tumours. This novel MR study aimed 
to thoroughly examine the relationship between blood 
glucose-related factors and primary CNS tumours, pro-
viding new insights into the prevention and treatment of 
common CNS tumours.

Materials and methods
Study design
In this study, we used MR as the primary research 
method to investigate the causal relationship between 
T2DM and glucose-related factors in six groups of com-
mon CNS tumours. MR is a research method for causal 
inference that utilises single-nucleotide polymorphisms 
(SNPs) as instrumental variables [35]. The selection of the 
instrumental variable must satisfy three conditions: first, 
the instrumental variable must be significantly correlated 
with the exposure; second, the instrumental variable 
must affect the outcome solely through the exposure, not 
through other pathways; and third, the instrumental vari-
able must not be confounded by other factors [36]. We 
then conducted co-localisation analyses to explore com-
mon genetic correlation loci between exposure and out-
come to verify the causality [37]. No ethical approval was 
required for this study because all data were derived from 
secondary analyses of publicly available gene sequencing 
data and did not contain information about any individu-
als. In addition, our manuscripts comply with STROBE-
MR guidelines.

Exposure data
Datasets on blood glucose-related factors levels were 
retrieved from the GWAS. These comprised five datas-
ets: T2DM (ebi-a-GCST006867), fasting insulin (ebi-a-
GCST90002238), fasting glucose (ebi-a-GCST90002232), 
glycated haemoglobin (ebi-a-GCST90014006), and insu-
lin-like growth factor-1 (ebi-a-GCST90014008). All data-
sets for the exposure were derived from the European 
Individuals Study.

The T2DM dataset included 62,892 European individu-
als with 655,6666 samples and 503,070,727 SNPs. The 
fasting insulin dataset contained 151,0103 samples and 
296,64438 SNPs. The fasting glucose dataset included 
200,622 samples and 31,008,728 SNPs. The glycated 
haemoglobin dataset included 389,889 samples and 
10,783,722 SNPs. The dataset for insulin like growth fac-
tor-1 dataset included 387,834 samples and 10,783,705 
SNPs.

Outcome data
We selected six common CNS tumours: glioblastoma 
(finn-b-C3_GBM), benign meningioma (finn-b-CD2_
BENIGN_MENINGES), malignant meningioma (finn-
b-C3_MENINGES), pituitary and craniopharyngioma 
(finn-b-C3_GBM), cranial nerve tumours (finn-b-C3_
GBM), and spinal cord tumours (finn-b-CD2_BENIGN_
SPINAL_CORD). We obtained the data for these tumour 
types from the Finngen database, which contains a rich 
dataset of genetic loci [38]. All datasets for the outcome 
were from European populations. The glioblastoma 
dataset (n = 91) contained 16,380,466 SNPs. The benign 
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meningioma dataset (n = 1280) contained 16,380,466 
SNPs. The dataset for malignant meningiomas (n = 640) 
contained 16,380,466 SNPs. The dataset for pituitary 
tumours and craniopharyngiomas (n = 735) contained 
16,380,466 SNPs. The dataset for cranial nerve tumours 
(n = 357) contained 16,380,466 SNPs. The dataset for spi-
nal cord tumours (n = 196) contained 16,380,466 SNPs.

Instrumental variable selection
To more precisely explore the relationship between 
blood glucose factors and common CNS tumours, we 
selected SNP strictly based on P < 5*10− 8 [39]. Consider-
ing that a chain imbalance could affect our findings [40], 
we controlled the clump in the MR process at r2 = 0.001 
and kb = 10,000. We selected SNPs that met the above 
requirements, and to ensure the precision of our findings, 
we also eliminated palindromic sequences and ambigu-
ous or duplicated SNPs [41]. To ensure a strong correla-
tion in our selected SNPs, we calculated the F-value for 
each SNP, requiring it to be > 10 to ensure the validity 
of our results [42]. Then, SNPs with F-values < 10 were 
deleted to avoid weakening the reliability of our results. 
Finally, each SNP was tested using PhenoScanner to 
exclude the influence of confounding factors.

MR analysis
To study the causal relationship between T2DM, glu-
cose-related factors (fasting insulin, fasting glucose, gly-
cated haemoglobin, and insulin-like growth factor-1), 
and six common CNS tumours, we utilised four meth-
ods: inverse-variance weighted (IVW), MR-Egger (MR-
Egger), weighted median (WM), and weighted mode. We 
used the IVW method as the primary method because 
of its efficiency in handling instrumental variables in the 
presence of multiple variants to obtain the most accurate 
results, as well as its ability to assess the heterogeneity of 
the results [43]. The remaining three methods were used 
as supplementary sources of data. The MR-Egger method 
improves the robustness of results in the presence of 
null instrumental variables [44], while the WM method 
remains applicable even in the presence of up to 50% 
invalid instruments [45], making it a good supplement.

To ensure the reliability of our results, we performed 
tests of heterogeneity and horizontal multiplicity. For the 
heterogeneity test, we used Cochran’s Q-test based on 
the IVW and MR-Egger methods, as it showed unique 
accuracy in the heterogeneity test of pooled data [46]. For 
the horizontal multivariate validity test, we used the MR-
Egger intercept and MR Pleiotropy RESidual Sum and 
Outlier (MR-PRESSO) methods. An MR-Egger intercept 
close to zero indicates minimal horizontal pleiotropy 
[44]. The MR-PRESSO method, on the other hand, allows 
for a global test and correction by excluding outliers [47]. 

We also removed SNPs individually and analysed the 
effect on the overall results.

Co-localisation analysis
To determine covariation between exposure and out-
come, we performed a co-localisation analysis between 
T2DM and the six common CNS tumours. The co-
localisation analysis was based on five hypotheses: H0, 
no association with any trait; H1, association with trait 
1 but not trait 2; H2, association with trait 2 but not trait 
1; H3, association with traits 1 and 2, but an indepen-
dent SNP; and H4, association with traits 1 and 2 in the 
presence of a common region [48]. During the tests, we 
referred to the pH4 value, considering a pH4 value > 0.8 
as indicative of shared causal variance between exposure 
and outcome. All analyses were conducted using R soft-
ware version 4.3.2. The packages “TwoSampleMR”, “phe-
noscanner”, “MRPRESSO”, “LDlink”and “coloc”.

Results
MR analysis
Instrumental variable selection
We extracted 114, 38, 63, 352, and 383 SNPs from 
T2DM, fasting insulin, fasting glucose, glycated haemo-
globin, and insulin-like growth factor-1, respectively, at 
P < 5*10− 8. The F-values for these SNPs met our require-
ments, and each number of SNPs selected was sufficiently 
high to ensure robust results.

Causal relationship between glycaemic correlates and 
glioblastomas
We found that T2DM increased the risk of glioblastoma 
(OR, 1.600; 95% CI, 1.009–2.536; P = 0.046). However, no 
significant causal relationships were observed for fasting 
insulin (OR, 6.246; 95% CI,0.194–201; P = 0.301), fast-
ing glucose (OR, 3.735; 95% CI,0.589–23.707; P = 0.162), 
glycated haemoglobin (OR, 1.590; 95% CI, 0.749–3.187; 
P = 0.191), and insulin-like growth factor-1 (OR, 0.907; 
95% CI, 0.438–1.878; P = 0.792) with glioblastomas 
(Table 1; Fig. 1).

Causal relationship between blood glucose-related factors 
and benign meningiomas
We found that insulin-like growth factor-1 reduced the 
risk of benign meningiomas (OR, 0.799; 95% CI, 0.651–
0.980; P = 0.031). No significant causal relationships 
were observed for T2DM (OR, 0.944; 95% CI,0.828–
1.076; P = 0.388), fasting insulin (OR, 0.624; 95% CI, 
0.199–1.962; P = 0.420), fasting glucose (OR, 0.816; 95% 
CI, 0.473–1.407; P = 0.464), and glycated haemoglobin 
(OR, 0.957; 95% CI, 0.793–1.154; P = 0.643) with benign 
meningiomas (Table 1; Fig. 1).
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Causal relationship between blood glucose-related factors 
and malignant meningiomas
We found no significant causal relationships between 
malignant meningiomas and T2DM (OR, 0.862; 95% CI, 
0.720–1.032; P = 0.107), fasting insulin (OR, 0.701; 95% 
CI, 0.174–2.830; P = 0.618), fasting glucose (OR, 0.615; 
95% CI, 0.306–1.236; P = 0.172), glycated haemoglobin 
(OR, 0.897; 95% CI, 0.689–1.167; P = 0.417), and insulin-
like growth factor-1 (OR, 0.856; 95% CI, 0.640–1.147; 
P = 0.298) (Table 1; Fig. 1).

Causal relationship between glycaemic correlates and 
pituitary tumours and craniopharyngiomas
Insulin-like growth factor-1 increased the risk of pitu-
itary tumours and craniopharyngiomas (OR, 1.442; 95% 
CI, 1.108–1.876; P = 0.006). No significant causal relation-
ships were found for T2DM (OR, 1.056; 95% CI, 0.902–
1.237; P = 0.495), fasting insulin (OR, 0.702; 95% CI, 
0.206–2.390; P = 0.571), fasting glucose (OR, 0.934; 95% 
CI, 0.464–1.880; P = 0.849), and glycated haemoglobin 

(OR, 0.880; 95% CI, 0.682–1.136; P = 0.327) (Table  1; 
Fig. 1).

Causal relationship between blood glucose-related factors 
and pituitary and benign spinal cord tumours
We found that fasting glucose (OR, 4.971; 95% CI, 1.115–
22.166; P = 0.035) and glycated haemoglobin (OR, 1.692; 
95% CI, 1.043–2.743; P = 0.333) levels increased the risk 
of spinal cord tumours. No significant causal relation-
ships were found for T2DM (OR, 1.148; 95% CI, 0.841–
1.567; P = 0.384), fasting insulin (OR, 0.302; 95% CI, 
0.028–3.254; P = 0.324), and insulin-like growth factor-1 
(OR, 0.730; 95% CI, 0.442–1.205; P = 0.218) with benign 
spinal cord tumours (Table 1; Fig. 1).

Causal relationship between blood glucose-related factors 
and pituitary and benign cranial nerve tumours
We found no significant causal relationships between 
benign cranial nerve tumours and T2DM (OR, 1.017; 
95% CI, 0.807–1.282; P = 0.884), fasting insulin (OR, 
0.397; 95% CI, 0.069–2.303; P = 0.303), fasting glucose 

Table 1  MR analysis between type 2 diabetes mellitus and glycaemic factors with central nervous system tumours (IVW, inverse-
variance weighted mode; SNP, single-nucleotide polymorphisms; HbA1c, glycated haemoglobin; IGF-1, insulin-like growth factor-1)
Exposure Outcome Method nSNP P OR (95% CI)
Type 2 diabetes Glioblastoma IVW 114 0.046 1.600(1.009–2.536)
Fasting insulin Glioblastoma IVW 38 0.301 6.246(0.194–201)
Fasting glucose Glioblastoma IVW 64 0.162 3.735(0.589–23.707)
HbA1c Glioblastoma IVW 352 0.191 1.590(0.794–3.187)
IGF-1 Glioblastoma IVW 383 0.792 0.907 (0.438–1.878)
Type 2 diabetes Benign meningioma IVW 108 0.388 0.944 (0.828–1.076)
Fasting insulin Benign meningioma IVW 38 0.42 0.624 (0.199–1.962)
Fasting glucose Benign meningioma IVW 64 0.464 0.816 (0.473–1.407)
HbA1c Benign meningioma IVW 352 0.643 0.957 (0.793–1.154)
IGF-1 Benign meningioma IVW 382 0.031 0.799 (0.651–0.980)
Type 2 diabetes Malignant meningioma IVW 108 0.107 0.862 (0.720–1.032)
Fasting insulin Malignant meningioma IVW 35 0.618 0.701 (0.174–2.830)
Fasting glucose Malignant meningioma IVW 64 0.172 0.615 (0.306–1.236)
HbA1c Malignant meningioma IVW 352 0.417 0.897 (0.689–1.167)
IGF-1 Malignant meningioma IVW 383 0.298 0.856 (0.640–1.147)
Type 2 diabetes Pituitary tumour Craniopharyngioma IVW 108 0.495 1.056 (0.902–1.237)
Fasting insulin Pituitary tumour Craniopharyngioma IVW 38 0.571 0.702 (0.206–2.390)
Fasting glucose Pituitary tumour Craniopharyngioma IVW 64 0.849 0.934 (0.464–1.880)
HbA1c Pituitary tumour Craniopharyngioma IVW 352 0.327 0.880 (0.682–1.136)
IGF-1 Pituitary tumour Craniopharyngioma IVW 383 0.006 1.442 (1.108–1.876)
Type 2 diabetes Cranial neuroma IVW 108 0.884 1.017 (0.807–1.282)
Fasting insulin Cranial neuroma IVW 38 0.303 0.397 (0.069–2.303)
Fasting glucose Cranial neuroma IVW 64 0.251 0.552 (0.201–1.521)
HbA1c Cranial neuroma IVW 308 0.724 1.076 (0.717–1.615)
IGF-1 Cranial neuroma IVW 383 0.687 0.924 (0.629–1.357)
Type 2 diabetes Spinal cord tumour IVW 108 0.384 1.148 (0.841–1.567)
Fasting insulin Spinal cord tumour IVW 38 0.324 0.302 (0.028–3.254)
Fasting glucose Spinal cord tumour IVW 63 0.035 4.971 (1.115–22.166)
HbA1c Spinal cord tumour IVW 352 0.033 1.692 (1.043–2.743)
IGF-1 Spinal cord tumour IVW 383 0.218 0.730 (0.442–1.205)
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(OR, 0.552; 95% CI, 0.201–1.521; P = 0.251), glycated hae-
moglobin (OR, 1.076; 95% CI, 0.717–1.615; P = 0.724), 
and insulin-like growth factor-1 (OR, 0.924; 95% CI, 
0.629–1.357; P = 0.687) (Table 1; Fig. 1).

Sensitivity analyses
We used Cochran’s Q test based on the IVW and MR-
Egger methods and found no significant heterogene-
ity in the results. For the horizontal pleiotropy test, the 
MR-Egger intercept and MR-PRESSO methods indicated 
no significant pleiotropy in the results (Table  2). In the 
leave-one-out analysis, no individual SNP significantly 
affected the overall validity of the results.

Co-localisation analysis
We performed a co-localisation analysis of T2DM and 
glucose-related factors in six CNS tumours and found 

no shared causal variants (Table  2). This reinforces the 
robustness of our results.

Discussion
This study comprehensively investigated the causal rela-
tionship between T2DM, related glycaemic factors, and 
common CNS tumours based on publicly available data. 
To the best of our knowledge, this is the first MR study 
to comprehensively investigate the genetic associations 
between glycaemic factors and six types of common CNS 
tumours. We also performed co-localisation analyses to 
search for potential common genetic loci.

Blood glucose is one of the most essential substances 
for environmental homeostasis in the human body and 
is especially prone to change, Fluctuations in blood glu-
cose have been associated with a variety of diseases [49]. 
Type 2 diabetes, a systemic disease characterised by 

Table 2  Heterogeneity and multiple validity tests and co-localisation analysis (MR-PRESSO, MR Pleiotropy RESidual Sum and Outlier; 
IGF-1, insulin-like growth factor-1; HbA1c, glycated haemoglobin)

Heterogeneity test Pleiotropy test Co-localization

Q test P value
Exposure Outcome IVW MR-Egger Egger Intercept MR-PRESSO H4
Type 2 diabetes Glioblastoma 0.208 0.195 0.582 0.187 0.311
IGF-1 Benign meningioma 0.109 0.102 0.996 0.137 0.302
IGF-1 Pituitary tumour Craniopharyngioma 0.202 0.205 0.273 NA 0.315
Fasting glucose Spinal cord tumour 0.279 0.252 0.754 NA 0.586
HbA1c Spinal cord tumour 0.317 0.327 0.196 0.245 0.716

Fig. 1  Scatter plots: (A) Type 2 diabetes and glioblastoma; (B) HbA1c and spinal cord tumour; (C) Fasting glucose and spinal cord tumour; (D) IGF-1 and 
pituitary tumour craniopharyngioma; (E) IGF-1 and benign meningioma (MR = Mendelian Randomization; HbA1c = glycated haemoglobin; IGF-1 = insu-
lin-like growth factor-1)
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impaired glucose regulation, is being increasingly studied 
[50]. In the present study, we found a causal relationship 
between genetic susceptibility to T2DM and related gly-
caemic factors and some CNS tumours, suggesting they 
influence the development of CNS tumours. These find-
ings may advance the study of the pathogenic factors and 
pathogenesis of CNS tumours, provide new ideas for pre-
vention and management, and advance the development 
of clinical treatments.

In our study, we found that T2DM increases the risk 
of glioblastoma. Type 2 diabetes mellitus accounts for 
more than 90% of diabetes mellitus cases, and genetic 
factors have been increasingly linked to it [51]. Our 
study presents different results from those of a previ-
ous cross-sectional case-control study [27], in which we 
found evidence at the genetic level that T2DM increased 
the risk of glioblastoma. This discrepancy may be due to 
the interference of multiple factors in their retrospective 
study, including the level of diabetes control and envi-
ronmental influences on gene expression. Previous stud-
ies have found that higher fetuin-A levels increase the 
risk of developing T2DM, and aggressive glioblastomas 
are malignant tumours that ectopically secrete fetuin-A, 
which may act as a ligand for TLR4 to promote tumouri-
genesis and progression [52]. Fetuin-A may be a media-
tor of T2DM with glioblastoma. Surprisingly, existing 
studies have found that various glucose-lowering drugs 
inhibit glioblastoma, which undoubtedly provides a new 
direction for studies exploring the relationship between 
T2DM and glioblastoma. One study found that metfor-
min prolonged the recurrence time in patients with glio-
blastoma when used in the treatment of T2DM [53]. The 
mechanism by which metformin simultaneously treats 
T2DM and glioblastoma may involve its role as a sensi-
tiser for temozolomide or its induction of AMP-activated 
protein kinase, which directly inhibits tumour cell pro-
liferation and migration and promotes glioblastoma cell 
apoptosis [54]. Siglitazone has also been found to be 
therapeutic for glioblastoma in vivo and in vitro animal 
experiments [55].

Furthermore, we found no causal relationship between 
T2DM and benign meningiomas, malignant meningio-
mas, pituitary tumours and craniopharyngiomas, cranial 
nerve tumours, or spinal cord tumours. Previous studies 
have reported a relationship between fat accumulation 
and meningioma development [56]. Some studies have 
found an association between T2DM and the postopera-
tive prognosis of meningiomas. Type 2 diabetes mellitus, 
as a metabolic disease, may affect the development of 
meningiomas by affecting fat composition and content; 
however, there is no genetic association between the 
two. Similarly, a cohort study found a significant reduc-
tion in the prevalence of meningiomas in patients using 
metformin to control T2DM [57]. Four genes (MMP12, 

PLAU, KRT14, and DKK1) have been found to have roles 
in the pathogenesis of craniopharyngioma and T2DM 
with an enrichment of several common immune cells 
[58], possibly mediating a link between the two. Metfor-
min has shown evidence of potential treatment for pitu-
itary tumours alongside T2DM, but the available studies 
remain imperfect [59]. Acromegaly, often caused by 
growth hormone-secreting pituitary tumours, is associ-
ated with T2DM in terms of pathogenesis [60] and ele-
vates blood glucose, making it more challenging to treat 
T2DM. This may serve as a bridge linking the two. The 
glucose-dependent glucagon receptor is involved in a 
number of pathological processes in T2DM, and abnor-
mal activation of this receptor has been observed in 
growth hormone pituitary tumours [57]. The expression 
of P63 of the P53 family has been found to be potentially 
associated with the development of acoustic neuromas 
[61], and specific P63 expression was found to be low in 
type 2 diabetic livers [62], suggesting a negative correla-
tion between the two. Overexpression of tumour necrosis 
factor-α (TNFα) was found in the spinal cord of monkeys 
with T2DM in animal studies [63], whereas patients with 
spinal cord tumours had elevated TNFα concentrations 
[64], indicating the presence of common inflammatory 
factors between T2DM and spinal cord tumours, which 
may act as mediators of the link between the two. How-
ever, we did not find a link at the genetic level.

Among the glucose-related factors, we found that 
insulin-like growth factor-1 decreased the risk of benign 
meningiomas and increased the risk of pituitary and 
craniopharyngiomas, while fasting glucose and glycated 
haemoglobin increased the risk of spinal cord tumours. 
A key step in the cascade response in glioblastoma is 
the optimal use of glucose [65]. An association between 
blood glucose and the prognosis of glioblastoma has been 
found in large retrospective studies, but unfortunately, 
not a genetic association. Hyperglycaemia promotes spi-
nal cord injury through the production of inflammatory 
mediators following ischaemic injury to the spinal cord, 
and it is possible that hyperglycaemia promotes spi-
nal cord tumourigenesis and progression through these 
inflammatory mediators [66, 67]. Glycated haemoglo-
bin levels positively correlate with proliferation levels in 
glioblastoma [68], and glycated haemoglobin levels and 
meningiomas are potentially correlated [69]. Glycated 
haemoglobin is commonly used as a measure of systemic 
chronic blood glucose levels. We only found a causal 
association between glycated haemoglobin and spinal 
cord tumours, with a possible temporal effect on other 
neurological tumours.

Signal transduction involving insulin-like growth fac-
tor-1 has an important role in the proliferation and trans-
formation of glioblastoma [70, 71]. However, we found 
no causal relationship between the two, pointing to a 
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direction for future research. Growth hormone pituitary 
tumours are characterised by the secretion of growth 
hormone, which stimulates the production of insulin-like 
growth factor-1, and our study found that insulin-like 
growth factor 1 promotes pituitary tumour development, 
creating a vicious cycle. Insulin-like growth factor-1 may 
provide a new approach for the pharmacological treat-
ment of growth hormone-induced pituitary tumours. 
In previous clinical studies, the growth hormone/insu-
lin-like growth factor-1 axis was found to increase the 
growth rate of meningiomas [72], which is inconsistent 
with our finding that insulin-like growth factor 1 is nega-
tively regulated in benign meningiomas, highlighting the 
need for further research into the various components of 
the growth hormone/insulin-like growth factor-1 axis in 
the pathogenesis of meningiomas.

The sample size of this statistical analysis was suffi-
ciently large, and we considered it to have high validity. 
We performed a co-localisation analysis of the positive 
results, which further enhanced the confidence of our 
findings. Our application of MR worked well to avoid 
confounding factors and determine the relationship 
between exposure factors and outcomes. However, our 
study has some limitations. First, the population we chose 
to study was predominantly European; therefore, the 
conclusions we drew may lack generalisability. Second, 
we failed to stratify the data on exposures and outcomes, 
and our results were insufficiently explored. Due to data 
limitations, we were also unable to obtain validated prog-
nostic markers to enrich our study. Observational experi-
ments suggest a sex-based difference in patients with 
meningiomas, whereas we obtained the data as a whole 
and were unable to obtain more suggestive results. We 
were also unable to stratify the meningiomas to obtain an 
association between different grades of meningioma and 
exposure. We were also unable to classify patients with 
pituitary tumours in further studies. Unfortunately, we 
are also unable to classify spinal cord tumours for study. 
Finally, we were unable to elucidate the biological mecha-
nisms involved in multiple dimensions, such as multi-
omics, gene, environment, and the duration of action.

Conclusion
We identified T2DM as a risk factor for glioblastoma, 
insulin-like growth factor1 as a protective factor for 
benign meningiomas and as a risk factor for pituitary 
tumours and craniopharyngiomas, and fasting glucose 
and glycated haemoglobin as risk factors for benign cord 
tumours. The above conclusions are mainly based on the 
IVW method. Additionally, we did not find phenotypes 
that shared causal variants in the co-localisation analysis. 
Our findings provide a new direction for exploring the 
relationship between glucose and related factors in CNS 
tumours, which requires further investigation.
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