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Abstract 

Parkinson’s disease (PD) is a neurodegenerative disease affecting millions of people around the world. Conventional 
PD detection algorithms are generally based on first and second-generation artificial neural network (ANN) models 
which consume high energy and have complex architecture. Considering these limitations, a time-varying synaptic 
efficacy function based leaky-integrate and fire neuron model, called SEFRON is used for the detection of PD. SEFRON 
explores the advantages of Spiking Neural Network (SNN) which is suitable for neuromorphic devices. To evaluate 
the performance of SEFRON, 2 publicly available standard datasets, namely (1) UCI: Oxford Parkinson’s Disease Detec-
tion Dataset and (2) UCI: Parkinson Dataset with replicated acoustic features are used. The performance is compared 
with other well-known neural network models: Multilayer Perceptron Neural Network (MLP-NN), Radial Basis Function 
Neural Network (RBF-NN), Recurrent Neural Network (RNN) and Long short-term memory (LSTM). The experimen-
tal results demonstrate that the SEFRON classifier achieves a maximum accuracy of 100% and an average accuracy 
of 99.49% on dataset 1. For dataset 2, it attains a peak accuracy of 94% and an average accuracy of 91.94%, outper-
forming the other classifiers in both cases. From the performance, it is proved that the presented model can help 
to develop a robust automated PD detection device that can assist the physicians to diagnose the disease at its early 
stage.
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Introduction
Parkinson’s disease is a neurological disorder that causes 
unexpected or uncontrollable movements, such as trem-
ors, stiffness, and balance and coordination problems. 
Parkinson’s disease is the second most common neurode-
generative disorder after Alzheimer’s disease with more 
than 10 million people worldwide having PD [1]. Since 
1990, the death rate from Parkinson’s disease per 100,000 
people in India has increased by 87.9%, with an annual 
average of 3.8% [2]. Dopamine plays an important role in 
controlling body movements. When neurons die or are 
damaged, they produce less dopamine, causing move-
ment disorders [3]. Parkinson’s disease is known to cause 
a loss of automatic movements. This includes a reduced 
ability to perform unconscious actions like blinking, 
smiling, or swinging the arms while walking. This symp-
tom arises due to the overall decline in motor function 
and coordination that characterizes the disease, impact-
ing both voluntary and involuntary movements; also, 
changes in speech and writing may occur. As there is no 
cure for PD, early detection can help control the symp-
toms. The statistics show that the number of PD patients 
is increasing at an alarming rate and to differentiate PD 
patients from healthy individuals, thorough examina-
tions, including EEG recordings, video observations, and 
speech assessments, may be required, particularly in less 
severe or ambiguous cases. In more advanced PD cases, 
clinical symptoms may be more evident, requiring fewer 
diagnostic procedures. Therefore, automation can be a 
relief for doctors from such tremendous pressure. Hence, 
in this paper, we proposed an accurate, robust, and fast 
model for the automatic detection of PD.

Due to the increasing number of PD patients, differ-
ent researchers have applied various artificial neural net-
work (ANN) techniques for the detection of PD. They 
have used a multitude of data modalities including voice 
recordings [4], movement [5], magnetic resonance imag-
ing (MRI) [6], handwriting [7], single-photon emission 
computed tomography (SPECT) [8]. However, among 
all the bio-markers, voice data plays a significant role in 
the detection of PD as change in voice is one of the early 
symptoms of PD. Studies have shown that vocal features 
such as reduced volume, monotone speech, and impre-
cise articulation can be detected long before the motor 
symptoms like tremors and gait disturbances become 
apparent [9]. Voice data collection is non-invasive, 
requiring only a microphone and recording environ-
ment, making it significantly less expensive and more 
accessible than MR imaging, which requires costly and 
sophisticated equipment [10]. Advanced machine learn-
ing models have shown high accuracy in classifying PD 
using voice data. Algorithms such as Support Vector 
Machines (SVM), Random Forests, and Deep Neural 

Networks have been effectively applied to vocal features, 
achieving impressive results [11]. While MR imaging 
and gait features are also valuable, they often require 
more specialized equipment and conditions for accurate 
measurement. Moreover, MR imaging might not always 
be accessible for regular monitoring [12]. Voice data has 
shown consistent results across different studies and 
populations. However, it is essential for studies to analyze 
similar PD groups (in terms of sex percentages, ages, dis-
ease severity, medication, etc.) to ensure uniformity and 
reliability of results [13]. Sakar et al. [14] applied Support 
Vector Machine (SVM) and k-nearest neighbour (KNN) 
techniques on the voice recordings collected from 40 
subjects including PD patients and healthy subjects. They 
achieved an average accuracy of 55% using the cross-
validation technique. The accuracy was improved using 
different feature extraction, feature selection and classi-
fication methods [15–17]. In the paper [18], the ensem-
ble model with SVM and Random Forest (RF) classifier is 
used. The weights of the model are optimized using Par-
ticle Swarm Optimization (PSO) Techniques. Although, 
the average and maximum accuracy of the model are 
93.7% and 100% consecutively, the computational cost 
is high. Models based on the Extreme Learning Machine 
classifier [19] have a comparatively fast response time. 
Several Deep Neural Network (DNN) [20–22] based 
models are also explored for the diagnosis of PD patients. 
Convolutional Neural network AlexNet obtained 88.9% 
accuracy [21] from Magnetic Resonance (MR) images. In 
the paper [22], a long short-term memory (LSTM) net-
work is applied on the gait pattern and obtained an aver-
age accuracy of 98.6%. Quan et al. [23] used Bidirectional 
LSTM combining the dynamic articulation transition 
features for PD detection and achieved 75.56% accuracy. 
This study focused on exploring time-series characteris-
tics of continuous speech signals. Recurrent Neural Net-
work with LSTM [24] has also been explored to analyze 
voice features. The authors obtain 95.8% accuracy on the 
parkinson’s telemonitoring voice dataset from the UCI 
public repository of datasets.

Although ANN or DNN models have produced good 
results in classification and pattern recognition, the rapid 
growth of neuromorphic engineering and increasing 
demand of high-performance computational hardware 
require more advanced, faster, and energy-conserva-
tive neural networks. Hence, Spiking Neural Network 
(SNN) is presented as the third generation of neural 
network architectures [25]. Unlike the previous ANN 
and DNN models, in SNN, the information propagates 
between different neurons in the form of spikes which 
is more like the human brain. DNNs transmit informa-
tion between neurons using real numbers, whereas SNNs 
rely on 1-bit spikes for communication. SNN requires 
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a smaller number of neurons to approximate a func-
tion in comparison to previous ANN and DNN mod-
els resulting higher computational power [26]. SNN 
has an intriguing property that output spike trains can 
be sparse in time and only fires when the post-synaptic 
potential reaches a certain threshold. Few spikes with 
high information content consume less energy making 
the SNN model energy-efficient [27]. Researchers have 
developed different supervised learning algorithms in 
the field of SNN such as SpikeProp [28], tempotron [29], 
synaptic weight association training (SWAT) [30] and 
others [31, 32]. The algorithms are modelled on biologi-
cally relevant mathematical neural models which include 
Hodgkin-Huxley (HH) model [33], the Leaky-Integrate-
and-Fire (LIF) models [34], Izhikerich’s (Iz) model [35], 
and Spike Response Model (SRM) [36]. The most popu-
lar model is the LIF model due to its simple but efficient 
structure. The inputs fed to the SNN model are spikes in 
nature which can compress the data size in comparison 
to real-world analog data. There are various analog-to-
spike encoding schemes including population encoding 
[28], rate encoding [32] and temporal encoding [37]. In 
SNN, the input neurons having pre-synaptic potentials 
or input spikes relate to output neurons through synapse 
model. The strength (or synaptic weights) between input 
and output neurons determines the probability of firing 
of output spikes, also called post-synaptic potentials. 
There are two types of synaptic plasticity: Long-term-
plasticity (constant weight) [38] and short-term-plasticity 
(dynamic weights) [39]. Short-term-plasticity has more 
computational power than long-term-plasticity.

 SNN is an emerging research area in the medical 
domain offering promising results [40–43]. Virgilio et al. 
[40] used SNN with Izhikevich model and trained the 
model using the Particle Swarm Optimization (PSO) 
algorithm to classify motor imagery tasks from EEG 
signals. They obtained an average accuracy of 88.75% 
accuracy. Also, Rajagopal et al. [43] applied deep convo-
lutional SNN for the detection of lung disease. Although 
PD detection is a well-studied research topic as an appli-
cation of first and second-generation ANNs, little work 
has been done by applying SNN algorithms [44–46]. 
The authors [44] have applied evolutionary SNN to clas-
sify PD and healthy persons using the SRM Model with 
the grammatical evolution (GE) algorithm and achieved 
85.96% accuracy. In this paper, an SNN based supervised 
learning algorithm with time-varying synaptic efficacy 
function and LIF neuron, called SEFRON [47] is pre-
sented for PD detection. In SEFRON, the weights are 
represented by adding different amplitude-modulated 
Gaussian distribution functions within a specific time 
window; thus, giving dynamic plasticity to the model. 
SEFRON has shown promising results for other diseases 

producing high accuracy and less computational com-
plexity. In this article, UCI: Oxford Parkinson’s Disease 
Detection Dataset and UCI: Parkinson Dataset with rep-
licated acoustic features (described in Sect.  3) are used 
to evaluate the performance of the SEFRON model and 
the outcomes are compared with well-known classifi-
ers: MLP [48], RBF [49], RNN [50] and LSTM [51]. The 
objectives of the paper are:

• To implement an energy-efficient Spiking Neural 
Network-based SEFRON model for the detection of 
Parkinson’s disease.

• To obtain high accuracy for balanced and unbalanced 
PD dataset.

• To compare the performance of the proposed 
SEFRON model with other SNN models as well as 
popular neural network (viz. MLP, RBF, RNN and 
LSTM) models for benchmark dataset.

The rest of the paper is organized as follows: Sect.  2 
elaborates on the proposed method, Sect. 3 describes the 
datasets used and discusses the experimental results, and 
finally, Sect. 4 presents the conclusion and future work of 
the paper.

Methodology for the detection of Parkinson’s 
disease
Dataset description
In this paper, two publicly available standard UCI: Oxford 
Parkinson’s Disease Detection Dataset and UCI: Parkin-
son Dataset with replicated acoustic features are used to 
evaluate the performance of the suggested methods.

A Dataset 1: This dataset [52] consists of speech meas-
urements collected from 31 persons, 23 people are 
suffering from PD. There are 195 instances with 22 
features and the last column signifies whether the 
person is PD patient or healthy (0 implies healthy and 
1 implies PD). The details of the features are elabo-
rated in Table 1. Fig. 1 shows the correlation matrix 
of features from dataset 1. From the correlation 
matrix, it is visible that feature 4 and 5, feature 9 and 
10, and feature 13 and 14 have extremely high posi-
tive correlations with each other. This suggests that 
these features are likely providing similar information 
and might be redundant.

B Dataset 2: This dataset [53] includes acoustic features 
extracted from sustained /a/ phonation voice record-
ings of 80 subjects, comprising 40 individuals with 
Parkinson’s Disease (PD). Among these subjects, 32 
are female and 48 are male. Each subject has three 
replications, resulting in 240 instances in total, with 
44 features per instance. The features include pitch 
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and amplitude perturbation measures, harmonic-to-
noise ratios, Mel frequency cepstral coefficients, and 
other specialized metrics like recurrence period den-
sity entropy and pitch period entropy.

i) Pitch local perturbation measures: relative jitter (Jit-
ter_rel), absolute jitter (Jitter_abs), relative average 
perturbation (Jitter_RAP), and pitch perturbation 
quotient (Jitter_PPQ).

ii) Amplitude perturbation measures: local shim-
mer (Shim_loc), shimmer in dB (Shim_dB), 3-point 
amplitude perturbation quotient (Shim_APQ3), 
5-point amplitude perturbation quotient (Shim_
APQ5), and 11-point amplitude perturbation quo-
tient (Shim_APQ11).

iii) Harmonic-to-noise ratio measures: harmonic-to-
noise ratio in the frequency band 0–500 Hz (HNR05), 
in 0–1500 Hz (HNR15), in 0–2500 Hz (HNR25), in 
0–3500 Hz (HNR35), and in 0–3800 Hz (HNR38).

iv) Mel frequency cepstral coefficient-based spectral 
measures of order 0 to 12 (MFCC0, MFCC1,…, 

MFCC12) and their derivatives (Delta0, Delta1,…, 
Delta12).

v) Recurrence period density entropy (RPDE), vi) 
Detrended fluctuation analysis (DFA), vii) Pitch 
period entropy (PPE), and viii) Glottal-to-noise exci-
tation ratio (GNE).

Table  2 describes the range of each feature for both 
PD and healthy subjects. The correlation matrix of 
dataset 2 is shown in Fig. 2. Many features within cer-
tain groups show strong positive correlations, indicat-
ing they might be measuring similar characteristics or 
related aspects of the data. The MFCC features and 
Delta features (Delta1 through Delta12) exhibit high 
correlations with each other (values mostly in the 
range of 0.7–0.9). This suggests that these features are 
closely related and may provide redundant information. 
HNR05, HNR15, HNR25, HNR35, and HNR38 are also 
highly correlated with each other. These high correla-
tions indicate that these features may be capturing sim-
ilar characteristics of voice quality, specifically related 
to harmonics and noise levels. Jitter (e.g., Jitter_rel, 

Table 1 Description of dataset #1

Feature Name PD Healthy

Min Value Max Value Median Min Value Max Value Median

1 MDVP: Fo (Hz) Average vocal fundamental frequency 88.33 223.36 145.174 110.74 260.11 198.996

2 MDVP: Fhi (Hz) Maximum vocal fundamental frequency 102.15 588.52 163.335 113.60 592.03 231.1615

3 MDVP: Flo (Hz) Minimum vocal fundamental frequency 65.48 199.02 99.77 74.29 239.17 113.9385

4 MDVP: Jitter(%) MDVP jitter in percentage 0.00168 0.03316 0.00544 0.00178 0.0136 0.00336

5 MDVP: Jitter (Abs) MDVP absolute jitter in ms 0.00001 0.00026 0.00004 0.000007 0.00008 0.000025

6 MDVP: RAP MDVP relative amplitude perturbation 0.00068 0.02144 0.00284 0.00092 0.00624 0.00163

7 MDVP: PPQ MDVP five-point period perturbation quotient 0.00092 0.01958 0.00314 0.00106 0.00564 0.001775

8 Jitter: DDP Average absolute difference of differences 
between jitter cycles

0.00204 0.06433 0.00853 0.00276 0.01873 0.00488

9 MDVP: Shimmer MDVP local shimmer 0.01022 0.11908 0.02838 0.00954 0.04087 0.01671

10 MDVP: Shimmer (dB) MDVP local shimmer in dB 0.09 1.302 0.263 0.085 0.405 0.154

11 Shimmer: APQ3 Three-point amplitude perturbation quotient 0.00455 0.05647 0.01484 0.00468 0.02336 0.00878

12 Shimmer: APQ5 Five-point amplitude perturbation quotient 0.0057 0.0794 0.0165 0.00606 0.02498 0.01023

13 MDVP: APQ MDVP 11-point amplitude perturbation quotient 0.00811 0.13778 0.02157 0.00719 0.02745 0.01302

14 Shimmer: DDA Average absolute differences 
between the amplitudes of consecutive periods

0.01364 0.16942 0.04451 0.01403 0.07008 0.02633

15 NHR Noise-to-harmonics ratio 0.00231 0.31482 0.01658 0.00065 0.10715 0.00483

16 HNR Harmonics-to-noise ratio 8.441 29.928 21.414 17.883 33.047 24.997

17 RPDE Recurrence period density entropy measure 0.26365 0.68515 0.53053 0.25657 0.66384 0.43537

18 DFA Signal fractal scaling exponent of detrended 
fluctuation analysis

0.57428 0.82529 0.72665 0.62671 0.78571 0.68253

19 spread1 Two nonlinear measures of fundamental −7.12092 −2.43403 −5.44004 −6.75926 0.64278 −6.82645

20 spread2 Frequency variation 0.06341 0.45049 0.24088 0.00627 0.29195 0.16736

21 D2 Correlation dimension 1.76596 3.67116 2.43959 1.42329 2.88245 2.12951

22 PPE Pitch period entropy 0.09319 0.52737 0.22272 0.04454 0.25240 0.11512
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Jitter_abs, etc.) and Shimmer features (e.g., Shim_loc, 
Shim_dB) generally show low to moderate correlations 
(values close to 0) with the MFCC, Delta, and HNR 
features. This suggests that the Jitter and Shimmer fea-
tures may capture unique information about the voice 
data that is not covered by other feature groups. Some 
Jitter features have negative correlations with features 
like GNE (Glottal-to-Noise Excitation), though these 
correlations are generally weak or moderate.

Figure 3 shows the proposed model for the detection 
of Parkinson’s disease. The model has three important 
stages: data collection, preprocessing and classifica-
tion. The first PD dataset [52] discussed in Sect. 3 con-
tains 22 features, while the second dataset [53] includes 
44 features. The input data Xc has M × N  dimension 
where M is the number of samples and N  signifies the 
number of features. The ath sample of the bth feature is 
normalized using Eq. 1.

The normalized data X  is fed to the classifiers. In this 
paper, the performance of five classifiers: MLP, RBF, 

(1)X(a, b) =
Xc(a, b)

max(Xc(:, b))

RNN, LSTM and SEFRON are compared. The param-
eters of the classifiers are adjusted based on the differ-
ence (e(n)) between the actual classified output (y(n)) 
and the desired output (d(n)), following their respective 
learning algorithms. Here, we outline the operational 
principle of the proposed classifier.

Proposed SEFRON model
Figure 4 shows the SEFRON architecture with a single 
neuron showing both inhibitory and excitatory nature. 
Here,P number of presynaptic neurons and a single 
output neuron are used. The presynaptic spikes can 
occur within T ms time interval and [T + δ T]ms time 
window is considered to capture the postsynaptic spike. 
Extended δ Tms is considered for the late postsynaptic 
spikes. At first, the normalized input data (using Eq. 
(1)) is converted into presynaptic spike times using a 
well-studied population encoding scheme. The input 
features are fed to multiple receptive field neurons and 
each neuron generates one spike. The total number of 
spikes are determined by the number of receptive field 
neurons ( P ). The firing strength ψ l

m  of each receptive 

Fig. 1 Correlation Matrix of the features present in dataset#1
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Table 2 Description of dataset #2

Feature Name PD Healthy

Min value Max value Median Min value Max value Median

1 Jitter_rel 0.15406 6.8382 0.459265 0.14801 1.66 0.3209

2 Jitter_abs 0.00000707 0.00054986 0.0000353 0.00000816 0.0001548 0.0000169

3 Jitter_RAP 0.00094451 0.043843 0.0024889 0.0006783 0.010179 0.0018967

4 Jitter_PPQ 0.001193 0.065199 0.0027538 0.0010358 0.0093634 0.0020547

5 Shim_loc 0.013511 0.1926 0.030173 0.007444 0.075575 0.0373045

6 Shim_dB 0.11953 1.7476 0.261085 0.064989 0.67396 0.32909

7 Shim_APQ3 0.006986 0.11324 0.017387 0.0033436 0.043532 0.0210605

8 Shim_APQ5 0.0081477 0.12076 0.018711 0.004103 0.047809 0.0239305

9 Shi_APQ11 0.010865 0.14244 0.021451 0.006459 0.05853 0.0260115

10 HNR05 22.22472 85.82675 54.648028 44.04468 101.20633 66.771324

11 HNR15 26.27403 95.82331 61.115223 46.37354 109.65112 66.871476

12 HNR25 33.15610 105.63068 73.108972 55.82089 120.71283 76.758923

13 HNR35 36.49402 110.63571 79.768243 60.96113 128.28933 82.172395

14 HNR38 36.90821 111.48172 79.887769 61.96711 129.98524 82.484571

15 RPDE 0.16276 0.53595 1.347184 0.18697 0.46493 0.277062

16 DFA 0.41136 0.76973 1.347184 0.46278 0.78438 0.531063

17 PPE 0.00413 0.83583 1.347184 0.00453 0.90840 0.007481

18 GNE 0.85401 0.98616 1.347184 0.84731 0.98729 0.934484

19 MFCC0 0.77015 1.94910 1.347184 0.85355 1.82285 1.474352

20 MFCC1 0.72552 1.66621 1.357392 0.74028 1.83565 1.465031

21 MFCC2 0.58091 1.92843 1.276835 0.56947 1.86498 1.367316

22 MFCC3 0.72761 1.76753 1.308839 1.01980 1.85708 1.323482

23 MFCC4 0.77126 1.77313 1.316501 1.12197 1.84085 1.248497

24 MFCC5 0.61154 1.70349 1.272507 1.10621 1.97615 1.335238

25 MFCC6 0.82909 1.86082 1.354877 0.99518 2.00078 1.265518

26 MFCC7 0.85015 1.92178 1.328514 0.65356 2.01673 1.350374

27 MFCC8 0.83954 1.75379 1.27815 0.97761 1.91843 1.43609

28 MFCC9 0.82363 1.80147 1.311421 1.11741 2.03958 1.396401

29 MFCC10 0.81361 1.71300 1.310119 1.09603 2.07129 1.354033

30 MFCC11 0.82316 1.80121 1.364874 1.07187 1.98356 1.481258

31 MFCC12 0.84436 1.74245 1.338597 1.11141 2.02998 1.396623

32 Delta0 0.62084 1.81403 1.335865 0.85903 2.02806 1.480762

33 Delta1 0.64741 1.85068 1.355913 1.06983 2.02129 1.469876

34 Delta2 0.62811 1.74830 1.345888 0.64049 1.97986 1.505809

35 Delta3 0.76646 1.81060 1.366277 1.04844 1.86059 1.423438

36 Delta4 0.84013 1.83910 1.301322 1.10800 2.03824 1.535167

37 Delta5 0.74169 1.73507 1.378934 1.14310 1.78598 1.466678

38 Delta6 0.75969 1.87679 1.38297 1.09120 1.98809 1.476818

39 Delta7 0.76465 1.75499 1.347864 1.07393 1.87280 1.37731

40 Delta8 0.76280 1.83052 1.376092 1.07753 1.92013 1.369121

41 Delta9 0.81194 1.75996 1.234949 1.11208 1.94333 1.429185

42 Delta10 0.77701 1.92014 1.360012 1.09022 1.94968 1.353333

43 Delta11 0.64313 1.78491 1.358487 1.13137 1.91839 1.501565

44 Delta12 0.74841 1.85765 1.38134 1.13883 1.93010 1.397031
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field neuron  l (l ǫ[1,Q])  for the mth input is calculated 
using Eq. (2).

where µ l and σ l are center and standard deviation of 
the lth receptive field neuron. µ l and σ l are calculated as

(2)ψ l
m = e

−
(xm−µ l )

2

2σ l
2

(3)µ l =
(2L− 3)

2(Q − 2)

where β is the overlap constant.
The set of presynaptic spike times Fj is defined as,

where Nj signifies the total number of spikes fired by 
the jth neuron. Each presynaptic neuron is connected to 
the postsynaptic neuron through time varying synaptic 

(4)σ l =
1

β (Q − 2)

(5)t1j_l = T × [1− ψ l
m]

(6)Fj =
(

stkj , 1 ≤ k ≤ Nj

)

, j ∈ {1, P}

Fig. 2 Correlation Matrix of the features present in dataset#2
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efficacy function or weights. The weights between jth 
presynaptic neuron and the postsynaptic neuron is 
denoted as ω j(t) and the spike response function of a 
LIF neuron is represented by φ (t) as shown in Eq. 7.

where τ is the time constant. The postsynaptic potential 
v(t) of SEFRON is defined as

(7)φ (t) =
t

τ
e
(

1− t
τ

)

Fig. 3 General block diagram for the detection of PD using neural network models

Fig. 4 Architecture of SEFRON model with P number of presynaptic neuron and a single postsynaptic neuron
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Postsynaptic neuron fires when the postsynaptic poten-
tial v(t) reaches to the threshold, θ . If the firing time is tf  , 
θ is defined as

To update the synaptic efficacy functions, normal-
ized form of STDP based learning rule is used. The rule 
defines the change in weights due to delay x as

V+and V−denote the highest change in weight due to 
long term potentiation and depression respectively. τ + 
and τ − represent the long-term potentiation and depres-
sion plasticity window respectively. As SEFRON consid-
ers only one postsynaptic spike, no presynaptic firing will 
be considered after first presynaptic firing. Hence, V− is 
equal to zero here. The fractional contribution χ k

j

(

tf
)

 
due to presynaptic spike at stkj  and postsynaptic spike tf  
is calculated as,

The fractional contribution points out the significance 
of a particular presynaptic spike. Higher is the value, 
more contribution the spike has to generate the postsyn-
aptic spike. By replacing ω j

(

stkj

)

 with χ k
j

(

tf
)

 in Eq. (8), 
postsynaptic potential is defined as,

As the value of postsynaptic potential varies with dif-
ferent input spikes, the ratio of threshold to postsynap-
tic potential which is referred as the overall strength is 
considered here. The error function ǫ is the difference 
between overall strength at desired 

(

tfd
)

 and actual (tfa) 
postsynaptic firing time (as shown in Eq. 13).

Therefore, the change in synaptic efficacy function is 
determined by Eqs. (14, 15).

(8)v(t) =
∑

P
j=1

∑ Nj

k=1
ω j

(

stkj

)

.φ (t − stkj )

(9)
θ = v

(

tf
)

=
∑

P
j=1

∑ Nj

k=1
ω j

(

stkj

)

.φ (tf − stkj )

(10)δ ω (x) =

{

+V+ e
− x

τ + if x ≥ 0

−V− e
x

τ − if x < 0

(11)χ k
j

(

tf
)

=
δ ω (tf − stkj )

∑

P
j=1

∑ Nj

k=1
δ ω (tf − stkj )

(12)VPSP

(

tf
)

=
∑

P
j=1

∑ Nj

k=1
χ k

j

(

tf
)

.φ (tf − stkj )

(13)ǫ = � tfd − � tfa =
θ

VPSP

(

tfd
) −

θ

VPSP

(

tfa
)

(14)∆ ω j

(

stkj

)

= µ .χ k
j

(

tfd
)

.ǫ

where µ is the learning rate. Now, ∆ ω j

(

stkj

)

 is modu-
lated using Gaussian distribution function to incorporate 
the time varying nature of synaptic efficacy function.

Here, σ is the efficacy update range. Finally, the updated 
weight for the jth neuron is determined by adding the 
contribution of time varying synaptic efficacy changes 
due to all presynaptic spikes of the particular neuron. The 
new synaptic efficacy function is given as,

This model is used for two-class classification problem 
by assigning two appropriate values to the postsynaptic 
firing times. Assume, td1 and td2 are two different class 
labels, tb is the boundary between two classes and y(n) is 
the calculated output for the nth input sample.

In SEFRON model, the performance can be optimized 
by choosing the suitable values of the tuning param-
eters, which are: number of receptive field neurons (Q), 
the overlap constant ( β ), the learning rate ( µ ), the effi-
cacy update range (σ), STDP learning window ( τ + ) and 
time constant of LIF neuron model ( τ ). The effects of the 
parameters are analyzed in Sect. 3.

Experimental results and discussion
As described in Sect.  2.1, two benchmark PD datasets 
from the UCI Machine Learning Repository were uti-
lized to test and evaluate the performance of the pro-
posed learning approach. The results obtained were 
then compared with existing learning methods designed 
for SNNs as well as traditional representative classifiers. 
The performance of the classifiers is evaluated using the 
accuracy, sensitivity, specificity, Matthew correlation 
coefficient (MCC), precision, F1 score and Gmean as fig-
ure of merits. As the first PD dataset used in this paper 
is imbalanced dataset, Gmean determines better robust-
ness of the classifier than the accuracy. In this experi-
ment, K-fold cross validation with different values of “K” 

(15)∆ ω j

(

stkj

)

= µ .(� tfd .χ
k
j (tfd)− � tfa .χ

k
j (tfd))

(16)f kj (t) = ∆ ω j

(

stkj

)

.e
−

(t−stkj )
2

2σ 2

(17)ω j new(t) = ω j old(t) +
∑ Nj

k=1
f kj (t)

(18)y(n) =

{

td1, ta < tb
td2, ta ≥ tb

(19)y(n) =

{

class − 1, ta < tb
class − 2, ta ≥ tb
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(which are K = 3, 5, 8, and 10) is used and the average val-
ues of the performance measures are considered to eval-
uate the effectiveness of the classifiers. For the analysis, 
percentage splitting of the entire dataset into training and 
testing set (90% training set / 10% testing set, 85% train-
ing set / 15% testing set, 80% training set / 20% testing 
set, and 70% training set / 30% testing set) is also utilized. 
K-fold cross validation mitigates overfitting problem and 
provides better estimation on the reliability of the model 
than the single percentage split.

As mentioned in Sect. 2.2, the effects of various param-
eters influencing the performance of SEFRON are studied 
thoroughly. The parameters are number of receptive field 
neurons ( Q ), the overlap constant ( β ), the learning rate 
( µ ), the efficacy update range (σ), STDP learning window 
( τ + ) and time constant of LIF neuron model ( τ ). The 
hyperparameter tuning is performed through a trial-and-
error approach. A range of values is first chosen for each 
parameter, and their effects on the results are assessed. 
Then, different combinations of these parameter values 
are tested to achieve optimal performance. After getting 
the best result, the plots are done for a range of hyperpa-
rameter keeping other parameters to its optimum value. 
Hence, we can get the best visualization of the effect of 
each parameter on accuracy. For example: as per Table 3, 
the optimum values of the parameters are given as Q = 6, 
β = 0.7, µ = 0.075, σ = 0.08, τ + = 0.45, τ = 0.63  . 
Now for the plot demonstrating the effect of the 
time constant, τ will vary from 0.1 to 2.5, while 
the other parameters remain fixed at Q = 6, 

β = 0.7, µ = 0.075, σ = 0.08, τ + = 0.45 . Figure  5 
shows how Gmean changes with the change in the num-
ber of receptive field neurons. The number of neurons 
indicates the data discriminability as well as the complex-
ity of the model. As the number of neurons increases, 
the computational complexity also increases. Due to 
population encoding scheme, the minimum number of 
neurons ( Q ) is required to be 3 (see Eq. (3)). From Fig. 5, 
it is observed that the best performance is achieved for 
Q = 6 and for Q > 6 the performance slowly degrades. 
Figure  6 shows the effect of overlap constant on the 
performance of SEFRON. β has an impact on the firing 
strength of receptive field neurons. It controls the width 
and hence, controls the localization of the spikes. Smaller 
width causes higher localization. In the study, β var-
ies from 0.2 to 1.2 and the performance is evaluated for 
successive difference of 0.025. It has been seen that for 
β < 0.45 , Gmean is 0. This is because of the high locali-
zation due to small value of β which causes underfitting. 
The optimum result is obtained for β = 0.7 . Learning 
rate plays an important role to determine the speed of 
the model. Higher the value of learning rate, faster the 

Table 3 Parameter values chosen for SEFRON to detect 
Parkinson’s Disease

Parameters Values Parameters Values

Q 6 σ 0.08

β 0.7 τ+ 0.45

µ 0.075 τ 0.63

Fig. 5 Impact of number of receptive field neurons ( Q ) on the Gmean [Dataset#1] of SEFRON
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algorithm will converge but mean square error can also 
increase. Figure  7 shows that for µ > 1.25 , the perfor-
mance is degrading and for µ = 0.075 , the Gmean is the 
highest. Although, this value is small indicating slow con-
vergence, to design a highly precise classifier µ = 0.075 
is considered for PD detection. Efficacy update range 
indicates the impact of weight change. If σ → ∞ , the 
synaptic efficacy function will no longer be time varying 

and it will become contact weight. Smaller the value 
of σ , more variation is present in the weight change. 
From Fig. 8, it can be seen that the best performance is 
obtained for 0.08 ≤ σ ≤ 0.16 ; and for σ ≥ 0.4 , Gmean 
degrades drastically. The effect of STDP learning window 
on the performance of SEFRON for the diagnosis of PD 
is depicted in Fig. 9. τ + plays a crucial role in assessing 
the impact of each presynaptic spike on weight update. 

Fig. 6 Impact of overlap constant ( β ) on the Gmean [Dataset#1] of SEFRON

Fig. 7 Impact of learning rate ( µ ) on the Gmean [Dataset#1] of SEFRON



Page 12 of 19Das et al. BMC Neurology          (2024) 24:492 

As τ + increases, the contributions of presynaptic spikes 
occurring significantly earlier relative to the postsynap-
tic spike intensify, while those fired in closer proximity 
to the postsynaptic spike diminish. From Fig.  9, it can 
be seen that for 0.35 < τ + < 0.6 , favorable outcome is 
obtained. For τ + > 0.9 , Gmean is dropped to zero. Time 
constant of LIF neuron models the membrane potential 
decay time constant that determines the rise and decay 

time of the postsynaptic potential. Figure  10 shows the 
change in Gmean for 0.1ms ≤ τ ≤ 2.5ms and in this 
experiment, the value of the time constant is taken as 
0.63ms . Depending on the analysis, suitable values of the 
parameters are chosen and presented in Table 3.

The presynaptic spike time interval ( T  ) is chosen to 
be 3ms . To capture the late postsynaptic spike, the time 
interval is chosen between 0 to 4ms . PD detection being a 

Fig. 8 Impact of sigma (σ) on the Gmean [Dataset#1] of SEFRON

Fig. 9 Impact of STDP learning window ( τ + ) on the Gmean [Dataset#1] of SEFRON
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Fig. 10 Impact of time constant ( τ ) on the Gmean [Dataset#1] of SEFRON

Table 4 Performance comparison for K-fold Cross Validation with different values of K for dataset #1

Technology Accuracy (in %) Sensitivity (in %) Specificity (in %) MCC Precision F1 Score Gmean

K = 3

 MLP-NN 94.36 89.03 96.79 0.8502 0.8860 0.8798 0.9262

 RBF-NN 84.61 51.32 95.06 0.5450 0.7906 0.6125 0.6937

 RNN 96.5 94 98.05 0.95 0.9988 0.9682 0.96

 LSTM 93.62 80.87 99.96 0.91 100 0.893 0.899

 SEFRON [Dataset#1] 99.49 96.97 100 0.9816 1 0.9841 0.9845
K = 5

 MLP-NN 94.36 85.68 97.53 0.8373 0.8933 0.8641 0.9116

 RBF-NN 83.08 49.62 93.61 0.4913 0.7110 0.5802 0.6743

 RNN 96.67 95.83 98 0.9063 1.0 0.9787 0.969

 LSTM 97.85 88.9 77 0.93 0.971 0.93 0.812

 SEFRON [Dataset#1] 99.48 96 100 0.9763 1 0.9778 0.9789
K = 8

 MLP-NN 94.35 83.54 98.09 0.8432 0.9292 0.8700 0.9019

 RBF-NN 83.63 49.27 94.15 0.5208 0.7833 0.5978 0.6780

 RNN 91.94 80.4 98.21 0.82 0.77 0.89 0.87

 LSTM 95.52 92.84 98 0.9017 0.9622 0.93 0.943

 SEFRON [Dataset#1] 98.96 95.63 100 0.9702 1 0.9756 0.9768
K = 10

 MLP-NN 95.39 88.42 98.13 0.8756 0.93 0.8997 0.9294

 RBF-NN 84.68 49.67 95.95 0.5270 0.7583 0.5946 0.6809

 RNN 92.11 100 88.69 0.84 0.78 0.86 0.93

 LSTM 93.87 84.56 98.33 0.90 0.9273 0.89 0.899

 SEFRON [Dataset#1] 99.47 95 100 0.9687 1 0.9667 0.9708
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Table 5 Performance comparison with different percentage split for dataset #1

Technology Accuracy (in %) Sensitivity (in %) Specificity (in %) MCC Precision F1 Score Gmean

90% training set − 10% testing set

 MLP-NN 95 83.33 100 0.8819 1 0.9091 0.9129

 RBF-NN 85 66.67 92.86 0.6299 0.8 0.7273 0.7868

 RNN 90 87.5 100 0.7638 1.0 0.9333 0.9354

 LSTM 85 81.25 100 0.6813 1.0 0.8965 0.9014

 SEFRON [Dataset#1] 100 100 100 1 1 1 1

85% training set − 15% testing set

 MLP-NN 90 83.33 91.67 0.7092 0.7143 0.7692 0.8740

 RBF-NN 90 66.67 95.83 0.6708 0.8 0.7273 0.7993

 RNN 88.7 66 100 0.7512 1.0 0.7911 0.812

 LSTM 89.72 100 84.3 0.808 0.7767 0.8743 0.92

 SEFRON [Dataset#1] 93.33 100 91.67 0.8292 0.75 0.8571 0.9574
80% training set − 20% testing set

 MLP-NN 92.31 87.5 93.55 0.7767 0.7778 0.8235 0.9047

 RBF-NN 89.74 62.5 96.77 0.6633 0.8333 0.7143 0.7777

 RNN 92.86 100 90.11 0.85 0.80 0.89 0.95

 LSTM 90 74.5 94.24 0.9274 1.0 0.9836 0.9837

 SEFRON [Dataset#1] 92.31 87.5 93.55 0.7767 0.7778 0.8235 0.9047
70% training set − 30% testing set

 MLP-NN 93.22 84.62 95.65 0.8027 0.8462 0.8462 0.8996

 RBF-NN 84.74 53.85 93.47 0.5223 0.7 0.6087 0.71

 RNN 93.22 93.61 91.67 0.8068 0.9778 0.9565 0.9263

 LSTM 93.22 93.61 91.67 0.8068 0.9778 0.9565 0.9263

 SEFRON [Dataset#1] 89.83 100 86.96 0.7713 0.6842 0.8125 0.9325

Fig. 11 Performance comparison of MLP, RBF, RNN, LSTM and SEFRON using K-fold cross validation with different value of ‘K’ for dataset#1
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2-class problem, class-1 (PD patients) and class-2 (healthy 
subjects) are separated by a boundary ( tb ) which is taken 
as 2ms . The performance of SEFRON is compared with 
other neural network models: MLP-NN, RBF-NN, RNN 
and LSTM. In this experiment, the MLP-NN classifier has 
three hidden layers with 150, 100, and 50 neurons in first, 
second, and third layer respectively. The RBF-NN has 8 
neurons in its single hidden layer. The RNN model has 
64 neurons in SimpleRNN layer and 32 neurons in fully 
dense layer. In the LSTM model, each gate has 64 units 
that independently control the memory and output flow 
at each time step. Tables 4 and 5 present the performance 
of all mentioned models using K-fold cross validation 
and different percentage split respectively. In K-fold cross 

validation smaller the value of K, less number of samples 
are used to train the models. It can be seen that almost in 
every case, SEFRON outperforms other two models. The 
maximum average accuracy, sensitivity, specificity, and 
Gmean obtained by SEFRON is 99.49%, 96.97%, 100%, 
and 0.9845 for 3-fold cross validation. From Table 5, it can 
be seen that using 90% training set and 10% testing set, 
100% accuracy is achieved by SEFRON model to sepa-
rate PD patients from healthy subjects. Figure  11 shows 
the comparison of the accuracies for K-fold cross valida-
tion with varying K. The bar plot indicates that SEFRON 
outperforms other models for all values of K. Although, 
in Fig. 12, for 70% training and 30% testing set MLP-NN, 
RNN and LSTM have better accuracy than SEFRON, for 

Fig. 12 Performance comparison of MLP, RBF, RNN, LSTM and SEFRON with different percentage split of training and testing sets for dataset#1

Fig. 13 Comparison of box plots of (a) accuracy, (b) sensitivity and (c) specificity for MLP, RBF, RNN, LSTM and SEFRON using 10-fold cross validation 
for dataset #1
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other percentage splits, SEFRON proves to be the best 
classifier. Figure  13 present the comparison of the box 
plots of accuracy for MLP-NN, RBF-NN, RNN, LSTM 
and SEFRON for 10-fold cross validation. The width of 
the box shows the variation of the results. Larger width 
refers to high variation in the outcomes and narrow width 
indicates more reliable performance. In Fig. 13(a), it can 
be seen that the accuracy of RBF-NN varies the most and 
SEFRON gives consistent outcome. Similarly, Fig.  13(b) 
and Fig.  13(c) compares the boxplots of sensitivity and 
specificity respectively. Sensitivity of RBF-NN model is 
unsatisfactory (as seen in Fig.  13(b)). From Fig.  13(c), it 
is observed that MLP-NN and SEFRON performs well in 
terms of specificity but RNN and LSTM produces high 
range of specificity.

The performance comparison of various technologies 
using K-fold cross-validation and different percentage 
splits for dataset 2 reveals several noteworthy observa-
tions. In Table 6, the SEFRON model consistently outper-
formed others across all values of K, achieving the highest 
accuracy, sensitivity, specificity, and F1 score, particularly 

at K = 10 with an accuracy of 91.94%. This indicates 
its robustness in classifying the data effectively. Mean-
while, the RBF-NN also showed commendable results, 
especially with a K of 5, where it recorded an accuracy 
of 84.11% and high sensitivity. Table 7 highlights the per-
formance of the classifiers based on different training and 
testing percentages. Notably, the SEFRON model again 
excelled with 89.58% accuracy when using an 80%−20% 
split, indicating its reliability in scenarios with varying 
training data proportions. The RBF-NN demonstrated 
strong performance as well, particularly at an 85%−15% 
split, where it reached an accuracy of 83.33%. Overall, 
both tables suggest that while SEFRON emerges as the 
superior model, RBF-NN and RNN also deliver competi-
tive results. Table 8 compares the suggested model with 
some state-of-the-art SNN models used for the detection 
of PD. Despite variations in the datasets, an attempt has 
been made to offer insight into the current developments 
within this field. It can be seen that the proposed model 
demonstrates superior performance compared to other 
SNN models as well.

Table 6 Performance comparison for K-fold cross validation with different values of K for dataset #2

Technology Accuracy (in %) Sensitivity (in %) Specificity (in %) MCC Precision F1 Score Gmean

K = 3

 MLP-NN 78.45 81.23 74.65 0.5612 0.8023 0.8345 0.7864

 RBF-NN 81.27 76.54 85.12 0.6138 0.8432 0.8117 0.798

 RNN 80.02 80.55 79.42 0.5914 0.8056 0.8015 0.8002

 LSTM 79.03 73.12 84.78 0.5784 0.7986 0.7623 0.7664

 SEFRON [Dataset#2] 86.12 85.23 87.34 0.7325 0.8724 0.8506 0.8652
K = 5

 MLP-NN 77.88 75.34 78.56 0.5431 0.791 0.7709 0.7736

 RBF-NN 84.11 90.67 77.25 0.6659 0.8154 0.8523 0.8459

 RNN 84.03 82.47 86.65 0.7199 0.8412 0.835 0.8325

 LSTM 81.67 78.22 82.4 0.6197 0.8061 0.8305 0.8183

 SEFRON [Dataset#2] 88.03 86.12 89.85 0.7551 0.9023 0.8825 0.8861
K = 8

 MLP-NN 82.14 78.67 85.42 0.6115 0.8189 0.8027 0.8049

 RBF-NN 86.32 81.25 92.1 0.7424 0.9057 0.8615 0.8722

 RNN 84.03 82.47 86.65 0.7199 0.8412 0.835 0.8325

 LSTM 83.09 80.21 85.18 0.6743 0.795 0.8202 0.8111

 SEFRON [Dataset#2] 90.14 89.45 91.32 0.7921 0.915 0.8913 0.8957
K = 10

 MLP-NN 83.33 79.32 88.67 0.6478 0.85 0.81 0.816

 RBF-NN 85.22 84.45 90.13 0.7115 0.9 0.87 0.877

 RNN 86 88.77 86.5 0.7521 0.873 0.8714 0.8750

 LSTM 84.53 86.67 82.22 0.6814 0.7905 0.8327 0.8141

 SEFRON [Dataset#2] 91.94 99.95 87.69 0.82 0.77 0.89 0.87
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In summary, SEFRON classifier achieves better perfor-
mance compared to other classifiers. Also, the compu-
tational complexity is less in SEFRON. 100% accuracy is 
obtained by SEFRON by using only 6 receptive field neu-
rons whereas MLP-NN has 150, 100, 50 neurons in three 
hidden layers. Although RBF-NN has only 8 neurons in 
the hidden layer, performance is poor in comparison to 
SEFRON.

Conclusion
An automatic PD detection technique which is com-
patible with neuromorphic devices is in dire need to 
control the mentioned disease. Therefore, in this study, 
the SEFRON model is investigated and compared with 
other neural network architectures (MLP, RBF, RNN, 
and LSTM). The experimental results revealed that 
SEFRON outperforms other neural networks with 

Table 7 Performance comparison with different percentage Split for dataset #2

Technology Accuracy (in %) Sensitivity (in %) Specificity (in %) MCC Precision F1 Score Gmean

90% training set − 10% testing set

 MLP-NN 79.16 84.61 72.73 0.5795 0.7857 0.8148 0.7844

 RBF-NN 80.56 77.78 83.33 0.612 0.8223 0.7999 0.8050

 RNN 79.17 72.72 84.62 0.5795 0.8 0.7619 0.7844

 LSTM 79.17 81.82 76.92 0.5853 0.75 0.7826 0.7933

 SEFRON [Dataset#2] 85.41 82.61 88 0.7079 0.8636 0.8445 0.8526
85% training set − 15% testing set

 MLP-NN 77.78 73.68 82.35 0.5604 0.8235 0.7778 0.7789

 RBF-NN 83.33 92.30 72.72 0.6693 0.8 0.8571 0.7844

 RNN 72.22 66.67 77.78 0.4472 0.75 0.7059 0.72

 LSTM 80.56 77.78 83.33 0.612 0.823 0.799 0.805

 SEFRON [Dataset#2] 86.61 84.21 88.23 0.7233 0.1389 0.8649 0.8619
80% training set − 20% testing set

 MLP-NN 81.25 78.26 84 0.6242 0.8181 0.8 0.8108

 RBF-NN 87.5 82.61 92 0.7513 0.9048 0.8260 0.8636

 RNN 81.25 83.33 79.17 0.6255 0.8 0.8163 0.8122

 LSTM 81.25 87.5 75 0.6299 0.7778 0.8235 0.81

 SEFRON [Dataset#2] 89.58 91.3 88 0.7923 0.875 0.8936 0.8963
70% training set − 30% testing set

 MLP-NN 83.33 77.78 88.89 0.6708 0.875 0.823 0.8314

 RBF-NN 84.72 77.78 91.68 0.7012 0.9032 0.8358 0.8443

 RNN 87.5 89.19 85.71 0.7499 0.8684 0.88 0.8743

 LSTM 83.33 89.19 77.14 0.6696 0.8049 0.8461 0.8295

 SEFRON [Dataset#2] 88.89 89.47 88.23 0.7771 0.8947 0.8947 0.8885

Table 8 Performance comparison with other state-of-the-art SNN models

Reference and Year Dataset Used Model/Algorithm Used Accuracy (in %)

López-Vázquez et al. [36], 2019 UCI Machine Learning Repository for PD Grammatical Evolution (GE)-based SNN 88.75%

Kerman et al. [37], 2022 Spike data collected from different regions of Brain Spiking MLP 93%

Siddique et al. [38], 2023 Spike data from the neurons in the subthalamic nucleus 
region

Spiking LSTM 99.48%

Proposed model [Dataset#1] UCI Machine Learning Repository for PD [51] Time-varying Synaptic Efficacy 
Function based SNN (SEFRON)

100%

Proposed model [Dataset#2] UCI Machine Learning Repository: Parkinson Dataset 
with replicated acoustic features [52]

Time-varying Synaptic Efficacy 
Function based SNN (SEFRON)

91.94%
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maximum accuracy of 100% and average accuracy of 
99.49% using k-fold cross validation for dataset 1 and 
maximum accuracy of 94% and an average accuracy 
of 91.94% for dataset 2, thus making it acceptable for 
clinical trial. One significant limitation of our study is 
the relatively small sample size of our dataset. It has 
impact on the performance metrics such as precision. 
Notably, there are variations in precision as the pro-
portion of the testing set increased, underscoring the 
sensitivity of our model to dataset distribution. Con-
ducting independent analysis of datasets 1 and 2 may 
increase the risk of SEFRON overfitting, as it prevents 
validation across diverse data sources and could limit 
generalizability. However, the datasets are analyzed 
separately because they differ in terms of data collec-
tion methods, population size, and feature structure. 
Dataset 1 includes 195 instances with 22 features from 
31 individuals, while dataset 2 has 240 instances with 
45 features from 80 individuals with three replicated 
recordings per subject. These differences could impact 
model performance if combined. Although, cross-data-
set validation could help address generalizability and 
overfitting problems, due to the differences in inher-
ent structure, combining the datasets could introduce 
biases. Hence, cross-dataset validation will be stud-
ied in future work using more harmonized datasets to 
strengthen SEFRON’s robustness. Additionally, differ-
ent SNN based models will also be studied to further 
reduce the structural complexity and improve the com-
putational power.
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