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Abstract
Background and purpose White matter hyperintensities in brain MRI are key indicators of various neurological 
conditions, and their accurate segmentation is essential for assessing disease progression. This study aims to 
evaluate the performance of a 3D convolutional neural network and a 3D Transformer-based model for white matter 
hyperintensities segmentation, focusing on their efficacy with limited datasets and similar computational resources.

Materials and methods We implemented a convolution-based model (3D ResNet-50 U-Net with spatial and 
channel squeeze & excitation) and a Transformer-based model (3D Swin Transformer with a convolutional stem). 
The models were evaluated on two clinical datasets from Kaohsiung Chang Gung Memorial Hospital and National 
Center for High-Performance Computing. Four metrics were used for evaluation: Dice similarity coefficient, lesion 
segmentation, lesion F1-Score, and lesion sensitivity.

Results The Transformer-based model, with appropriate adjustments, outperformed the well-established 
convolution-based model in foreground Dice similarity coefficient, lesion F1-Score, and sensitivity, demonstrating 
robust segmentation accuracy. DRLoc enhanced the Transformer’s performance, achieving comparable results on 
internal and benchmark datasets despite limited data availability.

Conclusion With comparable computational overhead, a Transformer-based model can surpass a well-established 
convolution-based model in white matter hyperintensities segmentation on small datasets by capturing global 
context effectively, making them suitable for clinical applications where computational resources are constrained.
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Introduction
White matter hyperintensities (WMHs) are abnormal 
clusters of T2-weighted hyperintense signals in the cere-
bral white matter associated with various pathologies and 
geriatric conditions. They serve as important predictors 
for diseases such as stroke, cognitive decline, dementia, 
and mortality [1–3]. The number, volume, shape, signal 
intensity, and spatial distributions of the WMHs vary, 
reflecting the unique characteristics of each condition 
[4]. Comprehensive assessment of WMHs can provide 
valuable insights into etiology, prognosis, disease pro-
gression, and treatment effectiveness [1].

Convolutional neural networks (CNNs) are among the 
most successful deep learning models in medical imag-
ing tasks, excelling in mass detection and segmentation 
across domains such as mammography [5], brain tumors 
[6], prostate cancer [7], uterine fibroids [8], and WMH 
segmentation [1].

While many studies have focused on CNN-based medi-
cal image analysis [1, 9, 10], The majority of 3D medical 
image analysis still relies on 2D CNN models. However, 
3D images with spatial information are more desirable 
for medical segmentation [9, 11]. Unlike 2D CNN, 3D 
CNNs work with four-dimensional input and output fea-
ture spaces (channel, depth, height, and width) and can 
extract inter-slice information from adjacent frames, 
which is crucial when regions of interest span multiple 
frames of 3D volumetric data. 3D CNN optimize vec-
tor multiplication for faster computation, though they 
involve more parameters per convolution kernel. How-
ever, 3D CNN models also have limitations. The com-
plexity of 3D data requires more storage and larger 
datasets for accurate segmentation [9, 11, 12]. They also 
need task-specific labeled data, which is often time-con-
suming and inevitably generates label noise. Although 
CNNs perform well on small to medium-sized datas-
ets, they struggle with capturing global and long-range 
semantic information [13]. To address this, self-attention 
mechanisms [14–16] have been introduced to help CNNs 
retrieve global information.

Recently, Transformer-based networks, which rely 
entirely on self-attention for input-output representation, 
have been explored for medical image tasks like brain 
tumor and organ segmentation [17–19]. Both CNNs and 
Transformers have strengths and weaknesses. Hybrid 
models, combining CNN and Transformer architectures 
with self-attention mechanisms (e.g., nnFormer [17], 
TransUNet [20]), have shown improved global context 
modeling without sacrificing the ability to capture low-
level details. However, Transformer can introduce sig-
nificant computational overhead and require large-scale 
datasets, which are often difficult to obtain in medical 
applications [21, 22].

Our study aimed to explore modern convolutional 
and Transformer architectures, and investigate how to 
train a Transformer model to match or surpass a well-
established CNN model for WMH segmentation on 
small datasets, using similar computational resources. 
The UNet architecture, known for its flexibility, modular 
design, contextual information incorporation, and fast 
training speed, was chosen as the foundation [23–25]. 
We developed two models: a CNN-based model using 3D 
ResNet50 U-Net [26] with spatial and channel squeeze 
& excitation (scSE) [14] and a Transformer-based model 
based on 3D Swin Transformer [27] with a modified con-
volutional stem and upsampling/downsampling blocks. 
Both models were adjusted to achieve similar complexity.

This article outlines our step-by-step process of train-
ing a Transformer model on small datasets to achieve 
comparable or superior performance to mature CNN 
models for WMH segmentation. Our models were vali-
dated using the WMH challenge dataset from MICCAI 
2017 [28], providing an accurate, robust tool for WMH 
segmentation on fluid-attenuated inversion recovery 
(FLAIR) images to assist clinicians and researchers in 
their work.

Materials and methods
Subjects
In this study, we retrospectively reviewed adult outpa-
tients who underwent brain MRI at Kaohsiung Chang 
Gung Memorial Hospital (KCGMH) between Janu-
ary 2010 and December 2018. A total of 121 cases were 
collected from the Chang Gung Research Database. 
Of these, 62 patients (51%) were female, and 59 (49%) 
were male, with an average age of 60 years (range: 30 
to 80 years). All patients were Asian. The study proto-
col was approved by the Institutional Review Board of 
Chang Gung Memorial Hospital (IRB No. 202002026A3, 
approved on 19 January 2021; IRB NO. 201900483B0, 
approved on 10 April 2019). All patient data were anony-
mized and de-identified.

Exclusion criteria included patients with.

1. Intracranial hemorrhage.
2. Intracranial space occupying lesions.
3. A history of craniotomy, craniectomy, or intracranial 

neurosurgery.
4. Reports mentioning transarterial embolization 

(TAE), seizure, epilepsy, arteriovenous malformation 
(AVM), arteriovenous fistula (AVF), intoxication, 
tumor, metastasis, cancer, multiple sclerosis (MS), 
radiotherapy, Parkison’s disease, moyamoya, 
tuberous sclerosis, trauma, hypoxic encephalopathy, 
necrosis, and hydrocephalus.

5. Patients with poor FLAIR image quality.
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Additionally, the second clinical dataset included 505 
cases obtained from the National Center for High-Perfor-
mance Computing (NCHC). All patients in the TMUH 
dataset were of Asian descent.

Image dataset
Three clinical datasets and one research dataset were 
used to explore and validate the characteristics of CNN-
based and Transformer-based models. The first clini-
cal dataset was acquired from KCGMH, and the second 
from the NCHC. FLAIR images from the NCHC dataset 
were collected from Taipei Medical University Hospital 
(TMUH) to assess small vessel disease. The third dataset 
is a mixed collection of KCGMH and NCHC data. The 
research dataset was acquired from the MICCAI WMH 
Challenge [28].

MRI acquisition
All brain MRIs from KCGMH were reviewed for high-
quality FLAIR images. Scans were acquired from three 
vendors (GE, Philips, Siemens) and five different scan-
ners with 1.5T or 3T field strengths and different aver-
age resolutions, following clinical FLAIR protocols. 
The images had an axial thickness of 2 to 5  mm. More 
details, including voxel sizes, echo time (TE), repetition 
time (TR), and case numbers, are provided in Table  1. 
The TMUH dataset includes a single MR source with 
an average resolution of 20 × 512 × 512. Data is available 
after registration on the NCHC website. The 2017 MIC-
CAI WMH Segmentation Challenge dataset includes 170 
sets of 3D T1-weighted and 2D multi-slice FLAIR images 
with WMH annotations. A total of 60 training and 110 
test images were used in this challenge, with imaging 
data from five scanners, three vendors, and three insti-
tutes. Additional information is available at  h t t p s : / / w m h 
. i s i . u u . n l /     [28]. 

Manual annotation of the WMH
WMH were manually segmented following the STan-
dards for ReportIng Vascular changes on nEuroimag-
ing (STRIVE) criteria [29]. A total of 121 brain MRI 
series from KCGMH with WMH lesions were manually 

segmented using T2 FLAIR sequences by an experienced 
observer (C.P.C.) with in-house software from Taiwan 
AI Labs, previously used in other studies [30]. Manual 
segmentations were peer-reviewed by a second observer 
(Y.C.C.), who has five years of experience in clinical neu-
roradiology. In cases of discrepancies, the first observer 
corrected the segmentations in a consensus session with 
the second observer. The corrected segmentation by 
C.P.C., after peer review, serves as the reference standard. 
The TMUH dataset contains 505 brain MRI series with 
T2 FLAIR WMH segmentation labels.

AI model
We present architectural overviews of the CNN-based 
model in Fig.  1 and the Transformer-based model in 
Fig.  2. Both models use a U-shape structure, similar to 
the conventional U-Net [31], for medical image segmen-
tation. The size of the input 3D MRI series is denoted 
as 1 × D × H × W  and the annotation of segmented 
masks includes the WMH foreground and background.

CNN-based model
The CNN-based model combines the conventional con-
volutional backbone and self-attention block. The con-
volutional backbone encodes spatial information into 
high-level features, capturing local object concepts at 
multiple scales. The self-attention block captures long-
range contextual dependencies from global information. 
Consequently, this model improves upon the standard 
U-Net [27]. The encoder is based on the 3D ResNet-50 
[26] backbone, while the decoder uses scSE blocks for 
self-attention and deconvolutional layers for feature 
upsampling. The scSE block models the interdependen-
cies between channels [32] and recalibrates pixel-wise 
spatial information by projecting the features to an 
importance map. This enhances voxel-wise segmentation 
mask predictions.

Transformer-based model
The Transformer-based model is a hybrid of CNN and 
Transformer, built on the 3D Swin Transformer in a 
U-shape structure [33]. Transformers are effective at 

Table 1 Scanner specifications for the KCGMH dataset
Manufacturer Field 

strength
Resolutions TR 

(ms)
TE 
(ms)

TI 
(ms)

Slice 
thick-
ness 
(mm)

Flip 
angle

FOV Voxel size 
(mm)

Num-
ber

GE Medical systems, GENESIS _ SIGNA 1.5T 256 × 256 × 20 9000 145 2200 5 90 230 × 230 0.82 × 0.82 8
GE Medical systems, SIGNA 3T 512 × 512 × 20 8000 100 2000 5 90 240 × 240 0.488 × 0.488 34
GE Medical systems, DISCOVERY MR450 1.5T 512 × 512 × 20 9000 145 2250 5 90 220 × 220 0.43 × 0.43 14
Philips Medical systems, Intera 1.5T 256 × 256 × 20 6000 110 2000 5 90 230 × 230 0.898 × 0.898 35
Siemens Medical systems, Skyra 3T 384 × 384 × 20 8000 76 2372 5 150 230 × 230 0.599 × 0.599 8
Siemens Medical systems, Skyra 3T 256 × 256 × 90 8000 90 2400 2 150 200 × 200 0.781 × 0.781 22
Abbreviations: FOV, Field-of-view; TE, Echo time; TR, Repetition time; TI, Inversion time

https://wmh.isi.uu.nl/
https://wmh.isi.uu.nl/
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aggregating global information but require large data-
sets for local inductive bias, which CNNs handle well. 
To address this, the model replaces the standard patch 
embedding layer with a convolutional patch embedding 
layer, generating overlapped patches that retain local 
information [14, 34–37]. In our configuration, we use a 
patch size of 1 × 4 × 4, followed by a linear layer to proj-
ect each patch into the channel dimension C . Multiple 
3D Swin Transformer blocks, with volumetric window 
multi-head self-attention (VW-MSA) and shifted ver-
sions (VSW-MSA), process each 3D window [27, 38]. 
These operations improve self-attention efficiency and 
control computation overhead, adapted for 3D medical 
images. For enabling 3D operations on medical images, 
we adopt a volumetric adaptation of it [38]. Specifically, 
at layer l, it is computed as:

 ẑ l = V W_MSA (LN( zl−1)) + zl−1

 zl = FFN (LN( ẑ l )) + ẑ l

 ẑ l+1 = V SW_MSA (LN( zl )) + zl

 zl+1 = FFN (LN( ẑ l+1 )) + ẑ l+1

Wherein LN is layer normalization, FFN is the feed-for-
ward network, and ẑ l and zl denote the output features 
of the V(S)W-MSA module and the FFN module for 
block l, respectively. Patch merging layers reduce the size 
of embedded features in a hierarchical manner, down-
scaling three times with factors of (1, 2, 2), (2, 2, 2), and 
(2, 2, 2). Implementation details are shown in Fig. 2.

Model training
We adopt Dice loss [39] and weighted binary cross-
entropy (BCE) loss, common in semantic segmentation, 
for training. Additionally, Dense Relative Localization 
(DRLoc) loss [40], originally an auxiliary self-supervised 
task for training Visual Transformers (VT) in computer 

Fig. 1 Architecture of the proposed CNN-based model
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vision, is included in our Transformer-based model. 
DRLoc enhances the Transformer model’s ability to 
interpret spatial relationships within an image by uti-
lizing relative positioning data rather than relying on 
labeled annotations. This technique effectively supports 
spatial understanding in contexts where labeled data is 
unavailable, enabling the Transformer to capture mean-
ingful spatial features autonomously [40]. The loss func-
tions for the CNN-based and Transformer-based models 
are expressed as:

 LCNN = LDice + LBCE

 Ltransformer = LDICE + LBCE + LDRLoc

Pre-training with weights accelerates convergence and 
improves performance in high-complexity models. For 
the Transformer-based model, we use pre-trained 2D 
model weights from ImageNet [41, 42], particularly for 
the QKV attention and MLP layers of the Swin Trans-
former, as they share the same architecture. Encoder 

weights are reused for the decoder due to model sym-
metry. In contrast, the CNN-based model is randomly 
initialized because suitable 3D pre-trained weights are 
difficult to obtain.

Implementation details
The KCGMH dataset (121 series) is split into 82/20/19 
(4.3:1:1) for training, validation, and testing. The TMUH 
dataset (505 series) is split 355/75/75 (4.7:1:1), and the 
mixed dataset (626 series) is split 437/95/94 (4.7:1:1). 
MRI inputs are normalized using min-max normaliza-
tion. During training, we apply random cropping of 
16 × 256 × 256 volumes and augmentations (rotation, 
scaling, Gaussian noise, brightness/contrast adjustment, 
gamma augmentation, and flipping). For validation and 
testing, images are resized to 256 × 256, and input depth 
is split into overlapped partitions of 16, with zero pad-
ding applied. We use an initial learning rate of 5e-5 and 
apply a polynomial learning rate scheduler (gamma 
value: 0.9). AdamW [43] is the default optimizer, with a 
batch size of 2 for both models. The CNN-based model 

Fig. 2 Architecture of the proposed Transformer-based model

 



Page 6 of 12Chen et al. BMC Neurology            (2025) 25:5 

is trained for 2000 epochs, while the Transformer-based 
model is trained for 5000 epochs due to slower conver-
gence. We adopt the Swin-B setting [27] with depth 
parameters (2, 2, 8, 2) for the Transformer-based model 
(Fig.  2). The Transformer model contains 86  M param-
eters, and the CNN model contains 87  M. All experi-
ments were conducted on a single NVIDIA RTX 3090 
GPU using Pytorch 1.8.1 [44]. We then further evaluated 
the models using the 2017 MICCAI WMH Segmenta-
tion Challenge dataset (60 pairs of T2-FLAIR and T1 MR 
images for training and 110 subjects for testing) [28].

Evaluation metrics
We evaluate performance on WMH foreground and 
lesion segmentation. For foreground segmentation, 
voxel-wise mask predictions are compared with the 
annotated ground truth using the Dice similarity coeffi-
cient (DSC). Lesion segmentation is evaluated by form-
ing 3D-connected components and calculating the 
Intersection over Union (IoU) of predicted and ground 
truth lesions, with an IoU > 0.35 considered a true posi-
tive [45]. F1-Score and sensitivity (recall) are also used to 
assess lesion segmentation.

For the 2017 MICCAI WMH Segmentation Challenge, 
we evaluate using five metrics: (1) foreground DSC, (2) 
95th percentile modified Hausdorff Distance (H95), (3) 
average volume difference (AVD), (4) lesion recall, and 
(5) lesion F1 score [28].

Experiments
Our experiments follow these steps:

Step (1) Train models from scratch.
Step (2) Introduce Dense Relative Localization 
(DRLoc).
Step (3) Utilize pre-trained model weights.
Step (4) Conduct experiments on the TMUH data-
set.
Step (5) Validate models in the MICCAI challenge.

Training models from scratch
We began by conducting ablation studies on both 
CNN-based and Transformer-based models using the 
KCGMH dataset. Since our dataset is small compared to 
other large-scale image datasets, we trained the models 
from scratch to observe their behavior in a limited data 
environment.

Introduce dense relative localization (DRLoc)
To improve performance, we introduced Dense Relative 
Localization (DRLoc) [40]. Originally designed to address 
the data demands of Transformers, DRLoc is an auxiliary 
self-supervised task that trains alongside the primary 
supervised learning loss. It leverages the relative dis-
tances between embedding tokens to extract local infor-
mation with minimal computational overhead, enhancing 
model robustness when training data is limited.

Utilizing pre-trained model weights
To further enhance the performance of the Trans-
former-based model, we applied 2D Swin Transformer 
pre-trained weights [41] from ImageNet and fine-tuned 
the model on the KCGMH medical image dataset. Ima-
geNet provides a vast, labeled dataset that supports the 
extraction of fundamental visual features, such as edges 
and textures, across various imaging domains, including 
medical. This generalizability makes ImageNet a practi-
cal starting point for WMH segmentation in data-limited 
settings.

Experiments on the TMUH dataset
We extended our experiments to the TMUH dataset, 
which has different annotation distributions and data 
sources. We designed training schemes using three data-
sets: KCGMH, TMUH, and a combined dataset of both. 
Model performance was evaluated on both KCGMH and 
TMUH test sets.

Model validation in the MICCAI challenge
For consistency, we modified our models to support 
both T1 and FLAIR MRI protocols, using the training set 
provided in the MICCAI challenge. These adjustments 
maintained the same settings as our previous experi-
ments, and we compared the performance of our models 
against 3D models from the challenge.

Results
Model ablation study: experiments on the KCGMH dataset
Table  2 presents results from our model ablation study, 
analyzed in three parts: (1) training from scratch, (2) 
training with DRLoc, and (3) initializing with pre-trained 
weights on the Transformer-based model.

Table 2 Comparative analysis of CNN-Based and transformer-
based models on the KCGMH dataset
Model DRLoc Pre-training Fore-

ground 
DSC

Lesion 
F1-Score

Lesion 
sensi-
tivity

CNN-
based

Without Without 0.6128 0.4544 0.4586

With Without 0.6021 0.4323 0.4273
Trans-
former-
based

Without Without 0.6353 0.4193 0.4514

With Without 0.6497 0.4392 0.444
With With 0.6585 0.5105 0.5363
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Training from scratch
Without DRLoc or pre-training, the Transformer-based 
model achieved a foreground DSC of 0.6353, outper-
forming the CNN-based model’s DSC of 0.6128 by nearly 
2%. However, the CNN-based model outperformed in 
lesion segmentation by 3.5% (F1-Score: 0.4544 vs. 0.4193) 
(Table 2). Both models had comparable lesion sensitivity. 
Overall, the Transformer-based model shows potential 
for further improvement even with limited training data.

Training with DRLoc
Applying DRLoc [40] enhanced the Transformer mod-
el’s foreground DSC by 1.5% and lesion F1-Score by 2% 
(Table 2), whereas it led to a decrease in the CNN-based 
model’s performance. DRLoc therefore improves Trans-
former-based model performance and is used in subse-
quent experiments.

Pre-training on transformer-based model
Pre-training significantly improved the Transformer-
based model, increasing lesion F1-Score and sensitivity by 
7% and 9%, respectively, with an additional 0.9% gain in 
foreground DSC. Consequently, the Transformer-based 

model outperformed the CNN-based model across all 
metrics, achieving a foreground DSC of 0.6585 (CNN: 
0.6128) and lesion F1-Score of 0.5105 (CNN: 0.4544) 
(Table 2).

Visualization
Figure 3 visualizes WMH segmentation results using the 
KCGMH dataset, displaying individual lesions in varied 
colors.

Experiments on the TMUH dataset
After configuring optimal settings on the KCGMH 
dataset, we trained models on three datasets: KCGMH, 
TMUH, and a combined dataset, then tested on both 
KCGMH (Table 3) and TMUH datasets (Table 4). Mod-
els trained and tested within the same dataset yielded 
the best performance. For instance, the Transformer-
based model achieved its highest foreground DSC of 
0.6585 when trained and tested on the KCGMH dataset, 
but performed worst (DSC: 0.308) when trained on the 
TMUH dataset. Mixed dataset training offered interme-
diate performance.

Fig. 3 WMH Segmentation Masks on FLAIR Scans from the KCGMH Dataset. (Different colors represent individual lesions. The top row shows original 
images, the second row shows ground truth images, the third row shows CNN-based model predictions, and the bottom row shows Transformer-based 
model predictions)

 



Page 8 of 12Chen et al. BMC Neurology            (2025) 25:5 

The Transformer-based model excelled across all met-
rics on the KCGMH test set (Table 3) but showed mixed 
results on the TMUH test set (Table 4). The CNN-based 
model had an edge in foreground segmentation on the 
TMUH test set, while both models were comparable in 
lesion segmentation (Table 4). Table 5 presents precision-
recall metrics, highlighting that both models exhibited 
low precision and high recall when trained on KCGMH 
and tested on TMUH (Transformer: 0.2896/0.6787; 
CNN: 0.2673/0.6859). However, when both models were 
trained and tested on the TMUH dataset, they exhib-
ited a different precision-recall balances (Transformer 
0.5304/0.4561, CNN 0.5203/0.4898), reflecting dataset 
quality differences.

Performance on the MICCAI challenge
Our models were also validated on the MICCAI chal-
lenge benchmark (Table  6). Our Transformer-based 

model achieved top results in foreground DSC (0.79), 
H95 (3.71), and lesion F1-Score (0.75). Our CNN-based 
model attained a DSC of 0.77 and lesion F1-Score of 0.70, 
comparable to many benchmark models, with an H95 
of 5.36 mm, outperforming all benchmark models. Both 
models achieved superior AVDs (CNN: 18.72, Trans-
former: 20.47) and lesion recall rates (CNN: 0.61, Trans-
former: 0.77).

Discussion
Experiments on the KCGMH dataset
This study explores two neural network approaches for 
WMH segmentation: a conventional well-established 
CNN-based model, widely applied in segmentation, and 
an emerging Transformer-based model known for its 
strong performance in various tasks. Through extensive 
experiments, we discuss practical issues related to the 
application of Transformers in medical imaging.

Transformer models typically require large datasets 
due to limited local inductive bias. DRLoc addresses this 
by enabling efficient Transformer training on smaller 
datasets, thus reducing data demands for medical imag-
ing tasks. Pre-training further equips Transformers with 
essential visual pattern knowledge, decreasing training 
time and boosting performance. Quantitative results in 
Table 2 show that the Transformer-based model outper-
forms the CNN model across all metrics.

For qualitative performance, Fig.  3 shows WMH seg-
mentation predictions. While both models detect larger 
lesions well, smaller or low-contrast lesions pose chal-
lenges. Notably, the Transformer-based model captures 

Table 3 Performance of the proposed models trained on 
varying datasets and tested on the KCGMH test set
Model Training 

dataset
Fore-
ground 
DSC

Lesion 
F1-Score

Lesion 
sensi-
tivity

CNN-based KCGMH 0.6128 0.4544 0.4586
TMUH 0.2636 0.1835 0.152
Mix 0.5915 0.4239 0.4232

Transformer-based KCGMH 0.6585 0.5105 0.5252
TMUH 0.308 0.2604 0.2009
Mix 0.6415 0.47 0.4667

“Mix” denotes mixing KCGMH and TMUH training data

Table 4 Performance of the proposed models trained on 
varying datasets and tested on the TMUH test set
Model Training 

dataset
Fore-
ground 
DSC

Lesion 
F1-Score

Lesion 
sensi-
tivity

CNN-based KCGMH 0.3551 0.2026 0.265
TMUH 0.464 0.3518 0.3491
Mix 0.4129 0.3053 0.3825

Transformer-based KCGMH 0.3686 0.2762 0.3366
TMUH 0.4557 0.3551 0.3153
Mix 0.3854 0.3016 0.3694

“Mix” denotes mixing KCGMH and TMUH training data

Table 5 Foreground segmentation statistics on the TMUH test 
set
Model Training 

dataset
Foreground 
precision

Fore-
ground 
recall

CNN-based KCGMH 0.2673 0.6859
TMUH 0.5203 0.4898
Mix 0.3538 0.6123

Transformer-based KCGMH 0.2896 0.6787
TMUH 0.5304 0.4561
Mix 0.3131 0.654

Table 6 Performance evaluation of 3D models in the 2017 
MICCAI WMH Segmentation Challenge

DSC H95(mm) AVD(%) Lesion 
Recall

Le-
sion 
F1

bigrbrain 0.77 9.46 28.04 0.78 0.71
cian 0.78 6.82 21.72 0.83 0.70
himinn 0.62 24.49 44.19 0.33 0.36
misp 0.78 11.10 19.71 0.68 0.71
neuro.ml 0.78 6.33 30.63 0.82 0.73
achilles 0.63 11.82 24.41 0.45 0.52
tignet 0.59 21.58 86.22 0.46 0.45
upc_dlmi 0.53 27.01 208.49 0.57 0.42
nic-vicorob 0.77 8.28 28.54 0.75 0.71
nus_mnndl 0.76 6.92 50.28 0.88 0.71
Proposed CNN-based 
model

0.77 5.36 18.72 0.61 0.7

Proposed Transformer-
based model

0.79 3.71 20.47 0.77 0.75

Note: For each metric, the table displays the average value. Results in bold 
indicate the best score for each metric

Abbreviations: AVD, Average Volume Difference; DSC, Dice Similarity 
Coefficient; H95, 95th percentile modified Hausdorff Distance
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more small lesions, likely due to its self-attention mecha-
nism, which captures global context.

Experiments on different datasets
We extended our analysis to three datasets: KCGMH, 
TMUH, and a mixed dataset. Models trained and tested 
on the same dataset showed optimal performance in 
foreground and lesion segmentation (Tables 3 and 4).

The Transformer model consistently outperformed 
the CNN model across all evaluation metrics on the 
KCGMH dataset, irrespective of whether it was trained 
on KCGMH, TMUH, or the mixed dataset (Table  3). 
However, performance varied when both models were 
trained and tested on the TMUH dataset. In this case, 
the Transformer model achieved slightly higher lesion 
F1-scores, whereas the CNN model performed margin-
ally better in foreground DSC (Table 4). Notably, training 
on the mixed dataset produced the highest lesion sensi-
tivity in both models when tested on TMUH, surpassing 
results from TMUH-only training, enhancing the model’s 
generalizability and ability to detect diverse lesion pre-
sentations (Table 4).

Table 5 highlights an interesting finding regarding label 
quality differences. Models trained on the KCGMH data-
set produced high recall but low precision when tested 
on the TMUH dataset, while models trained on TMUH 
achieved high precision but low recall on the same test 
set, indicating label quality inconsistencies. Figure  4 
shows that TMUH labels often omit smaller lesions near 
the edges of the brain, likely impacting model predic-
tions. Nevertheless, our models successfully segment 
foreground regions, even on MRI scans with coarse label 
quality.

Experiments on the MICCAI challenge
In the MICCAI challenge, our Transformer-based and 
CNN-based models achieved excellent results in fore-
ground DSC, H95, and lesion F1-score, highlighting 
robust segmentation accuracy, boundary localization, 
and lesion detection. Our Transformer-based model led 
with the highest scores in foreground DSC, H95, and 
lesion F1-score, surpassing other competing 3D mod-
els on the benchmark. Our CNN-based model achieved 
the lowest AVD, affirming its strength in lesion volume 
estimation, while the Transformer-based model also per-
formed well on AVD, demonstrating its high accuracy.

However, our models showed relatively lower lesion 
recall, which likely resulted from challenges in detect-
ing very small or faint lesions. This limitation may stem 
from not applying advanced techniques aimed at improv-
ing small lesion detection, such as targeted methods, 
model ensemble techniques, and post-processing strat-
egies used by models like “nic-vicorob”, “nus_mnndl”, 
“misp’’ and “neuroml”. These methods employ multi-scale 
approaches, selective sampling, and data augmentation 
to increase sensitivity to small lesions. Adopting simi-
lar strategies in future research, such as oversampling 
WMH regions, incorporating multi-scale features, and 
refining post-processing, could further enhance recall, 
particularly for small lesion detection, and elevate the 
model’s overall precision [28, 46–48]. Despite lacking 
specialized small lesion detection techniques, our Trans-
former-based model achieved excellent results, show-
ing significant improvements across major metrics. This 
performance places it at the forefront of lesion segmen-
tation, achieving the highest lesion F1 score among all 
models.

Fig. 4 Foreground segmentation predictions on the TMUH Dataset. (Left: TMUH ground truth image with incorrectly labeled WMH foregrounds as back-
ground. Right: Prediction by the CNN-based model, with the red mask indicating predicted foreground segmentation)

 



Page 10 of 12Chen et al. BMC Neurology            (2025) 25:5 

Limitations
While our proposed models achieve strong results in 
WMH segmentation, several limitations remain. First, 
our sample size is relatively small due to challenges in 
obtaining large, well-labeled medical 3D volumetric data. 
This limitation may affect the model’s ability to learn 
deep, discriminative features. Expanding the dataset 
across multiple centers could mitigate sample size con-
straints and enhance generalizability.

Second, although using a single data source can stream-
line model performance, broader generalization requires 
diverse data sources. Notably, our KCGMH dataset, 
while limited in size, includes varied scanner types, 
field strengths, and resolutions, providing an initial step 
toward model robustness across clinical environments. 
Future work will incorporate additional data variability 
to improve applicability. Additionally, label quality in the 
TMUH dataset poses a challenge; higher-quality segmen-
tations would improve the ground truth, reduce label 
variability, and enhance model performance. Employing 
consensus-based annotations and recent techniques—
such as semi-automated methods like BIANCA and LST 
[49, 50] and advanced deep learning approaches like 
TrUE-Net [51]—could significantly improve label preci-
sion and model outcomes.

Third, while ImageNet pre-training offers an accessible 
starting point, recent studies suggest that pre-training on 
domain-specific medical datasets may better align model 
features with medical imaging needs. This trade-off high-
lights ImageNet’s generalizability advantage while sug-
gesting potential accuracy gains from domain-specific 
datasets. Limited access to large-scale, labeled 3D medi-
cal data remains a challenge. To address this, future work 
will explore unsupervised learning on large-scale, unla-
beled 3D brain MR images to further refine our models.

Conclusion
Medical image segmentation algorithms are increas-
ingly developed to support clinical diagnosis and treat-
ment planning amid limited expert availability. Our study 
compares two modern 3D backbone networks for WMH 
segmentation on limited datasets. While Transformer 
models typically require substantial computational 
resources for training, their inference phase—critical 
for clinical application—demands significantly less. This 
distinction makes Transformers feasible for clinical envi-
ronments with limited computational capacity, as the 
primary processing occurs during training. The accu-
racy and convergence speed of our Transformer-based 
model outpaced those of the CNN-based model, while 
both models demonstrated comparable computational 
demands. This study establishes a foundation for apply-
ing Transformer architectures to medical segmentation, 
with promising applications in resource-constrained 

settings where segmentation performance and efficiency 
are both essential.
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