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Introduction
Pain is a common consequence of stroke. Poststroke pain 
(PSP) encompasses a diverse range of conditions, usu-
ally divided into central neuropathic pain, peripheral 
neuropathic pain, and nonneuropathic pain [1]. It is esti-
mated that 10–50% of stroke survivors experience some 
PSP [2–4], of which 70% report pain daily [5]. A recent 
analysis of pooled clinical trial data also showed that up 
to 3-9.5% of patients report extreme poststroke pain, 
with increasing numbers over time [6]. Individuals who 
experience pain following a stroke often endure other 
disabling sequelae, including cognitive decline, reduced 
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Abstract
Background and objectives Poststroke pain (PSP) is a prevalent and severe consequence of stroke, encompassing 
central, neuropathic, and nonneuropathic pain. In this study, we aimed to investigate clinical factors associated with 
PSP three months after stroke and concurrently explore the association between PSP and one-year mortality.

Methods This registry-based study comprised data from stroke patients admitted to three hospitals in Sweden 
between November 2014 and June 2019. The outcome was PSP three months after stroke. Twelve (out of 28) 
predictor variables were selected by three machine learning methods, and a multivariable binary logistic regression 
model was fitted for predicting PSP. The association between PSP and one-year poststroke mortality was examined 
using Cox proportional hazards models.

Results Among 4,160 stroke patients participating in the three-month follow-up, 54.7% reported PSP. Antiplatelet 
use, diabetes, hemiparesis, sensory deficits, and need for assistance before stroke were significant predictors of PSP. 
Male sex, being born in Sweden, higher income, and regular prestroke physical activity predicted the absence of PSP. 
After adjustment for age, sex, region of birth, and stroke severity, patients experiencing PSP had a significantly higher 
one-year mortality rate than those without pain, and the most severe level of pain (constant pain) was associated with 
the highest cumulative mortality.

Conclusion The study findings indicate treatable factors associated with PSP, which highlight areas of improvement 
in management strategies. Clinicians should recognize that PSP is associated with increased one-year mortality, 
emphasizing the importance of pain prevention and treatment for enhanced poststroke outcomes.
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quality of life, fatigue, and depression [5]. It has also been 
suggested that patients with PSP are at an increased risk 
of poststroke mortality [7] and dependency [6]. However, 
few prior studies have comprehensively evaluated the 
determinants and outcomes of PSP. Moreover, consensus 
guidelines for the management of PSP are lacking.

Factors such as female sex, severe stroke symptoms, 
functional dependency, fatigue, excessive alcohol use, 
diabetes mellitus, depression, antithrombotic treat-
ment, and statin use have previously been associated 
with a higher probability of PSP [2,7–12]. These associa-
tions have, however, not been consistent across studies. 
Understanding modifiable factors contributing to PSP is 
an important step in informing the development of effec-
tive management strategies and guidelines. Understand-
ing the consequences of PSP is necessary for targeted 
interventions.

The objective of this study was to investigate clinical 
factors associated with PSP three months after stroke 
and explore the association between PSP and one-year 
mortality. As many factors may be associated with PSP, 
we use supervised machine learning methods to identify 
the set of variables that could have importance in PSP. 
Machine learning techniques have gained prominence 
in medical research due to their ability to manage large, 
complex datasets and identify intricate patterns that may 
not be apparent using traditional statistical methods. In 
addition, we assumed our approach to be particularly 
advantageous when dealing with the vast amount of rou-
tinely collected healthcare data often available in stroke 
cohorts13,] as traditional statistical methods may struggle 
to handle complex interactions and patterns of multifac-
torial outcomes such as pain, whereas machine learn-
ing algorithms excel in extracting meaningful insights 
[14,15]. 

Methods
The Strengthening the Reporting of Observational Stud-
ies in Epidemiology (STROBE) Statement was followed 
[16].

Study design
The study sample consisted of patients admitted to 
the stroke units at three hospitals in Gothenburg, Swe-
den between November 1, 2014, and June 30, 2019, and 
included in the local stoke register (Väststroke). All 
stroke diagnoses were clinically verified, and all patients 
underwent brain imaging to differentiate between isch-
emic stroke and intracerebral hemorrhage. Additional 
patient in-hospital characteristics were collected from 
medical records and the national Swedish Stroke Regis-
ter (Riksstroke). All patients were invited to participate in 
a three-month postal follow-up facilitated by Riksstroke. 
Information on prior strokes and prestroke medications 

was also obtained from Riksstroke. Socioeconomic data 
were collected from the Integrated Database for Health 
Insurance and Labor Market Studies. Present comorbid 
conditions were identified in the National Patient Reg-
ister. Mortality rates and causes of death were obtained 
from the Cause of Death Register. The data were merged 
and pseudonymized by the National Board of Health and 
Welfare.

Outcomes and covariates
The primary outcome of the study was PSP reported at 
three months after stroke. To evaluate pain, each partici-
pant was asked to rate their present pain intensity using 
a four-tier scale, encompassing the following categories: 
absence of pain, occasional pain, regular pain, or persis-
tent pain. In regression analyses, the PSP was dichoto-
mized into two groups: those reporting no pain and those 
experiencing pain, which included the remaining three 
categories. In addition, one-year mortality rates were 
monitored for each patient who participated in the three-
month follow-up. Both stroke-related deaths and deaths 
from other causes were recorded.

Covariates were collected at baseline, which was 
defined as the time of incident stroke for each patient. 
Region of birth was classified as native-born in Sweden 
or abroad. Educational level was categorized as having a 
postsecondary education (> 12 years). Income was mea-
sured based on household income in the year prior to 
the stroke, and a high income was defined as an income 
within the highest tertile of the total cohort. Single 
households were defined as patients living alone without 
any other family members or unrelated individuals in the 
same dwelling. Smoking status was classified as either 
current smoking or absence of smoking for less than one 
year. Alcohol abuse was defined according to relevant 
conditions using the International Classification of Dis-
eases 10th revision (ICD-10). Prestroke physical activity 
was assessed using the Saltin-Grimby Physical Activity 
Level Scale (SGPALS) and divided into three levels: sed-
entary, light physical activity, and moderate to high phys-
ical activity [17]. Information on prestroke medications 
was obtained for antihypertensive, antiplatelet, antico-
agulant, and lipid-lowering drugs. Comorbid conditions 
were defined according to the ICD-10 and included atrial 
fibrillation, cancer, depression, diabetes, chronic obstruc-
tive pulmonary disease (COPD), renal failure, hyper-
lipidemia, and prior strokes. Interventional stroke care 
was recorded, including a range of neurosurgical proce-
dures (hemicraniectomy, cerebrospinal fluid drainage, 
and hematoma evacuation) as well as thrombectomy and 
intravenous thrombolysis. Stroke severity at admittance 
was evaluated using the National Institutes of Health 
Stroke Scale (NIHSS) [18]. Stroke sequelae, includ-
ing hemiparesis and sensory deficits, were recorded if 
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present during the hospital stay. The Montreal Cognitive 
Assessment (MoCA) was used to assess impairments in 
cognitive function at the stroke unit. The total possible 
score on the MoCA is 30 points, and a score of ≥ 26 was 
considered normal cognition [19]. The patients’ need 
for assistance was also assessed, distinguishing between 
those who were independent in their activities of daily 
living and those who needed help from others.

Statistics
Patients who reported intermittent, frequent, and con-
stant pain were combined into a single group for regres-
sion analyses. Drop-out analyses were conducted using 
the χ² test for categorical variables and the Mann‒Whit-
ney U test for continuous variables. Univariable binary 
logistic regression was used to evaluate the associations 
between covariates and PSP at three months. We calcu-
lated Cramer’s V coefficients to assess multicollinearity 
among covariates. Correlation coefficients ≥ ± 0.7 were 
set as a threshold for multicollinearity. The analyses were 
performed in R version 4.0.5 and Python version 3 [20]. 
All statistical tests were two-tailed at an alpha level of 5%.

Missing data
A missing data matrix was constructed to visualize the 
distribution of missing data, with no clear patterns of 
missingness across different observations (Supplemen-
tary Fig.  1). Multiple imputation by chained equations 
(MICE) was used to handle missing observations prior 
to the machine learning procedure [21]. The MICE algo-
rithm imputes missing values by creating multiple sets of 
plausible values based on observed data and relationships 
among all other variables. We created five imputed data-
sets, and each imputation underwent 20 iterations. The 
predictive mean matching method was employed, and a 
minimum correlation of 0.1 was considered in the predic-
tion models. All included covariates fulfilled the require-
ment of at least 80% useful data. The imputed data were 
evaluated using density plots, which show that imputed 
values follow the distributions of the actual data (Supple-
mentary Fig. 2).

Variable selection
To identify a parsimonious model with enhanced gener-
alizability, we employed a variable selection approach by 
developing three distinct supervised machine learning 
models. Covariates (n = 28) included in the analyses were 
based on previous literature [2,7–12] and availability of 
the data in the registries. The imputed data were split 
into training and testing sets, with 80% of the data used 
for training and 20% for testing. We employed binary 
classifiers least absolute shrinkage and selection operator 
(LASSO, logistic regression with L1 penalty [22], random 
forests [23], and eXtreme Gradient Boosting (XGBoost) 

[24] due to their different natures. LASSO is an ML 
model with regularization. Both random forests and gra-
dient boosting are ensemble methods, but they differ in 
their construction approach and how they handle errors 
during training. Each machine learning model was fit-
ted, and the hyperparameters were tuned in the training 
dataset by using 5-fold cross validation. The models were 
evaluated in testing datasets by obtaining the receiver 
operating characteristic curve (AUC-ROC).

1. LASSO logistic regression minimizes logistic loss 
with an L1 penalty on coefficients, promoting feature 
selection [22]. It is useful for high-dimensional 
datasets, offering control over sparsity and mitigating 
overfitting through a regularization hyperparameter 
(λ or alpha) [22].

2. Random forest: This is an ensemble learning method 
that constructs multiple decision tree models during 
training and combines their predictions to make final 
predictions. Each decision tree is built on a random 
subset of the data and a random subset of the 
features. This randomness helps to reduce overfitting 
and improve the model’s generalization ability. In 
binary classification tasks, each decision tree in the 
forest predicts the probability of the positive class, 
and the final prediction is obtained by averaging 
these probabilities across all trees [23]. Cross-
validation was used to find the optimal number of 
trees and features considered at each split.

3. XGBoost is a powerful machine learning algorithm 
known for its efficiency and high performance 
[24]. It belongs to the boosting family and works by 
combining the predictions of multiple weak models, 
typically decision trees. XGBoost employs a gradient 
boosting framework, optimizing both accuracy and 
computational speed [24].

Variable importance values were obtained for each algo-
rithm. The variable was regarded as an important predic-
tor for PSP if it was selected by all three ML methods, in 
accordance with the methodology previously described 
by Mostafaei et al. [25]. The threshold for coefficient 
value was set at > 0.01.

Prediction of PSP:
A multivariable binary logistic regression model 

was fitted in the complete dataset for predicting PSP 3 
months after stroke. Twelve variables identified as impor-
tant from the variable selection step were included in the 
regression model. At the variable level, we obtained Odds 
Ratios (OR), 95% confidence intervals (CIs) and P values. 
The regression model was evaluated with AUC-ROC and 
Akaike information criteria (AIC).
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Survival analysis
Cumulative one-year mortality following the three-
month follow-up was described using Kaplan‒Meier 
curves. Hazard ratios (HRs) and 95% CIs for one-year 
mortality were obtained from three Cox proportional 
hazards models. Model 1 represented the crude associa-
tion between PSP and one-year mortality. Model 2 was 
adjusted for age, sex, and region of birth. Model 3 was 
adjusted for age, sex, region, and stroke severity mea-
sured by NIHSS. As NIHSS had missing observations 
(n = 221), model 3 was constructed using both the origi-
nal and imputed data. Schoenfeld residuals were utilized 
to test the independence between residuals and time. All 
variables were evaluated as potential confounding factors 
in the Cox proportional hazards model. However, addi-
tional covariate adjustments violated the proportional 
hazards assumption, as determined by global correlations 
between scaled Schoenfeld residuals and time.

Results
Study sample
There were 6,491 patients treated for stroke during the 
study period. Among them, 4,160 (64%) participated in 
the three-month follow-up, 1051 (16%) had died, and 
1,280 (20%) did not respond. The frequency of miss-
ing observations and drop-out analyses are available in 
Supplementary Table 1. Included patients were younger 
and less affected by their stroke with a lower proportion 
of impaired cognition and need of assistance, although 
the largest difference was observed between included 
and deceased patients. Of 4,160 patients, 1,844 (44.3%) 
reported no pain, 1,214 (29.2%) reported intermittent 
pain, 642 (15.4%) reported frequent pain, 369 (8.9%) 
reported constant pain, and 91 (2.2%) were unsure about 
their pain status (excluded from analyses). In total, 2,225 
(54.7%) of 4,069 patients reported PSP. Table 1 presents 
the baseline characteristics of the included patients. 
Unadjusted odds ratios of PSP at the three-month follow-
up are presented in Table 1.

Variable selection
The LASSO, random forest, and XGBoost models iden-
tified 16, 22, and 22 variables, respectively (Fig.  1). The 
corresponding AUC-ROC (95% CI) values for LASSO, 
random forest, and XGBoost were 0.65 (0.61–0.69), 0.64 
(0.61–0.68), and 0.64 (0.61–0.68), respectively. All three 
models shared 12 variables with coefficients exceeding 
0.01.

Prediction of poststroke pain
The results of the multivariable binary logistic regres-
sion model are presented in Table  2. The ORs (range 
0.55–0.80) of PSP 3 months after stroke decreased if 
the patient was male, born in Sweden, had high income, 

had light physical activity, had moderate to high physical 
activity, or had neurointerventional therapy. However, 
the ORs (range 1.18–1.50) of PSP 3 months after stroke 
increased if the patient used antiplatelets, had diabetes, 
had hemiparesis, had sensory deficits, or needed assis-
tance before stroke.

Survival analyses
One year after the three-month follow-up, 199 (8.9%) 
patients with PSP had died compared to 110 (6.0%) 
patients with no pain. The cumulative mortality strati-
fied by PSP is presented in Fig.  2A. Patients with con-
stant pain at three months had the highest cumulative 
mortality (Fig.  2B). The frequency of stroke as a cause 
of death was similar between patients with and without 
PSP (43 of 199 [21.6%] versus 22 of 110 [20.0%]). Hazard 
ratios of mortality within one year after the three-month 
follow-up are presented in Table  2. In the unadjusted 
model, patients with PSP were significantly more likely 
to die within one year (HR 1.55, 95% CI 1.22–1.96) than 
patients without PSP. After adjusting for age, sex, and 
region of birth, the hazard ratio remained significantly 
increased (HR 1.45, 95% CI 1.14–1.84). Moreover, even 
when accounting for stroke severity in the analysis, the 
association between PSP and increased mortality per-
sisted using the original nonimputed dataset (HR 1.38, 
95% CI 1.08–1.78). This finding was further confirmed 
by similar results obtained from the imputed dataset (HR 
1.37, 95% CI 1.08–1.73), Table 3.

Discussion
This study aimed to explore factors associated with post-
stroke pain (PSP) three months after stroke, utilizing 
multidimensional clinical data and a supervised machine 
learning approach. Additionally, the relationship between 
PSP and one-year survival following the three-month 
assessment was investigated. Notable predictors of PSP 
included sociodemographic features, stroke-related 
deficits, prestroke conditions, and comorbidities. The 
findings highlight the intricate interplay of factors con-
tributing to PSP, encompassing sociodemographic traits, 
preexisting conditions, lifestyle choices, and stroke-
related neurological impairments. Furthermore, patients 
experiencing PSP exhibited a significantly higher one-
year mortality rate than those without pain.

We found that sex was a significant predictor of PSP. 
This finding is in line with previous studies, indicating 
that males have lower odds than females [3,26] Likewise, 
stroke sequelae in terms of sensory deficits and hemipa-
resis have previously been shown to be associated with 
PSP [9,10]. On the other hand, factors such as region of 
birth and prestroke physical activity emerged as novel 
predictors of PSP. These findings highlight the impor-
tance of considering sociodemographic and lifestyle 



Page 5 of 9Viktorisson et al. BMC Neurology           (2025) 25:10 

factors in understanding poststroke pain. Age did not 
show a significant association with PSP. Prior studies 
have reported conflicting findings regarding the rela-
tionship between age and PSP. One study found that 
increased age was associated with PSP [10], while others 
found the opposite [7,12]. The variability in these results 
highlights the complexity of factors influencing PSP and 
suggests that age alone may not be a decisive predictor 
for its occurrence.

We found that the need for assistance in daily activities 
was significantly associated with PSP. This is in line with 
previous studies showing positive associations between 
limitations in activity capacity and mobility [2,10]. How-
ever, we cannot conclude a causal association between 
activity and mobility limitations and PSP. Furthermore, 
physical activity prior to stroke also emerged as a signifi-
cant predictor of PSP. Both light intensity physical activ-
ity and moderate to high physical activity were associated 
with the absence of pain. The association was stronger 

Table 1 Baseline characteristics and associations between covariates and poststroke pain, no. Of patients 4069
Baseline characteristics Unadjusted associations
No PSP (n = 1844) PSP (n = 2225) Odds ratio (95% CI) p value *

Age, mean (SD) 72 (13) 74 (13) 1.01 (1.00-1.02) < 0.001
Male sex 1139 (62) 1038 (47) 0.54 (0.48–0.61) < 0.001
Born in Sweden 1611 (87) 1734 (78) 0.51 (0.43–0.60) < 0.001
Education > 12 years 515 (28) 515 (24) 0.78 (0.68–0.90) < 0.001
High income 816 (44) 695 (31) 0.57 (0.50–0.65) < 0.001
Single household 767 (42) 1039 (47) 1.25 (1.10–1.41) < 0.001
Smoking 193 (12) 292 (15) 1.27 (1.04–1.54) 0.018
Alcohol abuse 31 (2) 72 (3) 1.96 (1.29–3.03) 0.002
Prestroke physical activity
 Sedentary 701 (42) 1133 (56) ref -
 Light intensity 801 (48) 774 (39) 0.60 (1.47–1.78) < 0.001
 Moderate or high intensity 164 (10) 99 (5) 0.37 (0.29–0.49) < 0.001
Prestroke medications
 Antihypertensives 973 (53) 1264 (57) 1.18 (1.04–1.34) 0.009
 Antiplatelets 424 (23) 603 (27) 1.24 (1.08–1.44) 0.003
 Anticoagulants 212 (12) 256 (12) 0.99 (0.82–1.21) 0.947
 Statins 468 (25) 641 (29) 1.19 (1.03–1.37) 0.014
Comorbidities
 Atrial fibrillation 386 (24) 491 (24) 1.04 (0.89–1.21) 0.645
 Cancer 186 (10) 257 (12) 1.16 (0.95–1.42) 0.136
 Depression 65 (4) 144 (7) 1.89 (1.41–2.57) < 0.001
 Diabetes 302 (16) 476 (21) 1.39 (1.19–1.63) < 0.001
 COPD 101 (6) 216 (10) 1.86 (1.45–2.37) < 0.001
 Renal failure 127 (7) 165 (7) 1.08 (0.85–1.38) 0.516
 Hyperlipidemia 278 (15) 392 (18) 1.20 (1.02–1.42) 0.030
 Prior stroke 255 (14) 359 (16) 1.20 (1.01–1.43) 0.038
Stroke type
 Ischemic stroke 1677 (91) 1999 (90) ref -
 Intracerebral hemorrhage 163 (9) 222 (10) 1.14 (0.92–1.41) 0.219
Neuro interventional therapy a

 Neurosurgery 4 (0.2) 11 (0.5) 0.90 (0.77–1.05) 0.184
 Thrombectomy 212 (12) 241 (12) -
 Thrombolysis 298 (16) 305 (14) -
NIHSS, mean (SD) 4 (5) 5 (6) 1.03 (1.02–1.04) < 0.001
Hemiparesis 450 (28) 700 (38) 1.53 (1.32–1.76) < 0.001
Sensory deficit 348 (22) 562 (31) 1.56 (1.33–1.82) < 0.001
Cognition b

 Normal 356 (24) 337 (19) ref -
 Impaired 563 (38) 649 (37) 1.22 (1.01–1.47) 0.039
 Unclear 573 (38) 794 (45) 1.46 (1.22–1.76) < 0.001
Need of assistance before stroke 221 (13) 432 (20) 1.76 (1.48–2.10) < 0.001
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between regular physical activity and the absence of 
pain compared to light physical activity, which indicates 
that there may be a dose‒response to this association. 
Although no prior study has explored the association 
between prestroke physical activity and poststroke pain, 
our finding is consistent with previous research that has 
demonstrated the effectiveness of physical activity on 
chronic pain [27–29]. 

Prior studies have used several different time points for 
the evaluation of PSP, ranging from the acute phase to 5 
years poststroke [2,7–12]. The early subacute phase of 
stroke recovery, extending up to three months, involves 
neural repair and adaptation, where functional improve-
ments are most prominent [30]. By three months, neu-
rological recovery tends to stabilize, as compensatory 
mechanisms peak, and residual deficits become more 
apparent. Pain, having interacted with these recovery 
processes, may have reached a relatively stable state 
by this point, making the three-month mark suitable 
for evaluating its presence and impact on poststroke 
outcomes. The three-month poststroke evaluation 
of pain also captured both early-onset and persistent 
pain, facilitating clinical relevance and the feasibility of 
interventions.

Table 2 Results of the multivariable binary logistic regression 
model predicting poststroke pain three months after stroke, no. 
Of patients 4069
Variables OR 95% CI P values
Male sex 0.60 0.53 0.69 < 0.001
Born in Sweden 0.55 0.46 0.66 < 0.001
High income 0.78 0.68 0.89 < 0.001
Smoking 1.15 0.95 1.40 0.14
Light intensity PA 0.73 0.63 0.84 < 0.001
Moderate to high intensity PA 0.56 0.43 0.74 < 0.001
Antiplatelet use 1.18 1.01 1.37 0.04
Atrial fibrillation 0.90 0.77 1.05 0.18
Diabetes 1.25 1.06 1.48 < 0.05
Neuro interventional therapy 0.80 0.67 0.96 < 0.05
Hemiparesis 1.26 1.08 1.48 < 0.01
Sensory deficit 1.50 1.27 1.77 < 0.001
Need of assistance before stroke 1.27 1.05 1.54 < 0.05
Note: All variables represent the presence of the condition or characteristic

PA, Physical activity before stroke. Odds ratios and 95% confidence intervals 
(CI) were calculated using a multivariable binary logistic regression model. AUC 
(95% CI), 0.65 (0.64–0.68). Akaike information criteria, 5315

Fig. 1 Relative variable importance values for LASSO, random forests, and extreme gradient boosting models (results based on the training dataset 80%, 
No. of patients 3300); higher absolute values indicate a stronger impact. The numbers in parentheses indicate the count of variables with importance 
values greater than 0.01. A total of 12 variables were selected by the machine learning method. The AUC-ROC (95% CI) values for LASSO, random forest, 
and XGBoost were 0.65 (0.61–0.69), 0.64 (0.61–0.68), and 0.64 (0.61–0.68), respectively (results based on the test dataset 20%, No. of patients 814)
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After the three-month follow-up, we found an associa-
tion between PSP and one-year mortality. Patients with 
PSP had a significantly higher risk of mortality than those 
without pain. This finding aligns with prior research sug-
gesting that pain after stroke may have adverse effects on 
patient outcomes and overall survival [7,31]. The asso-
ciation between PSP and mortality persisted even after 
adjusting for age, sex, region, and stroke severity, indicat-
ing that poststroke pain may independently contribute to 
a higher risk of mortality. All patients with PSP faced a 
significantly higher risk of mortality than those without 
pain, and constant pain was associated with the highest 
cumulative mortality in the following year.

Using a range of supervised machine learning 
approaches in data analysis generally offers many advan-
tages. First, it allows for the identification of complex 
patterns and interactions among multiple variables often 
present in stroke cohorts, which might not be captured 
using traditional statistical methods [13,32]. The machine 
learning models used in this study were capable of han-
dling large numbers of predictors and could provide 
insights into the relative importance of each variable 
in predicting the outcome. Second, machine learning 
approaches were less prone to assumptions about the 
underlying data distribution, making them more robust 
and adaptable to different types of datasets [33]. This was 
particularly valuable in studies with diverse and multidi-
mensional data, where relationships between predictors 
and outcomes may be nonlinear and complex. However, 
the classification (AUC-ROC) values of the models were 
low, most likely due to limited variance.

The study has several strengths and limitations. The use 
of a supervised machine learning approach for variable 
selection allowed for a comprehensive analysis of numer-
ous clinical factors, providing valuable insights into the 
prediction of PSP after stroke. The study’s large sample 
size and multicenter design could enhance the generaliz-
ability of the results to a broader stroke population; how-
ever, the final regression model was based on 12 variables 
that could hinder the clinical implications of the results. 
Variables should have been selected by all ML models 
with coefficients > 0.01 to be included in the multivariable 
logistic regression models. This was an important step for 
achieving the parsimonious models; however, the thresh-
old of > 0.01 could be argued. The study’s observational 
nature prevents establishing causal relationships between 

Table 3 Associations between poststroke pain and one-year 
mortality

No. of 
patients

HR (95% 
CI)

p value 
*

Model 
1

Poststroke pain
unadjusted

4069 1.55 
(1.22–1.96)

< 0.001

Model 
2

Poststroke pain
adjusted for age, sex and 
region

4069 1.45 
(1.14–1.84)

0.002

Model 
3

Poststroke pain
adjusted for age, sex, 
region, and stroke severity

3848 1.38 
(1.08–1.78)

0.010

4069 (imp. 
data)

1.37 
(1.08–1.73)

0.009

* Bold text indicates significance (p < 0.05). Hazard ratios and 95% confidence 
intervals were calculated using Cox proportional hazard models. Model 1 
represented the crude association between poststroke pain and one-year 
mortality. Model 2 was adjusted for age, sex, and region of birth. Model 3 was 
adjusted for age, sex, region of birth and stroke severity measured by National 
Institutes of Health Stroke Scale scores (missing observations n = 221). Global 
correlation between scaled Schoenfeld residuals and time: Model 1 χ²=1.89, 
p = 0.17; Model 2 χ²=7.59, p = 0.108; Model 3 χ²=9.08, p = 0.106.

Fig. 2 Cumulative one-year mortality stratified by poststroke pain. Kaplan‒Meier curves for cumulative one-year mortality after the three-month follow-
up stratified by (A) pain or no pain and (B) all available responses
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PSP and other factors. Although various statistical tech-
niques were used to handle missing data, the possibility 
of bias due to missing observations cannot be completely 
ruled out. We were not able to distinguish between cen-
tral and peripheral pain syndromes. Additionally, despite 
efforts to adjust for confounding variables, residual con-
founding still exists. In particular, we were not able to 
adjust for preexisting pain, pain intensity measured by 
the Visual Analogue Scale, as well as prescribed pain 
medications, as these data were not included in the regis-
try. This gap may affect the interpretation of our findings, 
and future research should consider including such infor-
mation for a more comprehensive analysis. We were not 
able to adjust for the overrepresentation of PSP following 
thalamic and brainstem strokes [1]. Last, the study’s gen-
eralizability might be limited to the specific population 
and healthcare system in Sweden.

In conclusion, this study demonstrates the complexity 
of PSP and the usefulness of a supervised machine learn-
ing approach in investigating clinical factors associated 
with PSP after stroke. Important predictors of PSP three 
months after stroke were region of birth, sex, income, 
prestroke physical activity, diabetes, neurointerventional 
therapy, hemiparesis, sensory deficits, and need for assis-
tance before stroke. Patients who reported PSP had a 
significantly higher one-year mortality rate than those 
without pain, and those with constant pain had the high-
est cumulative mortality.
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