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Abstract
Background  Malignant brain tumors are among the most lethal cancers. Recent studies emphasized the crucial 
involvement of the immune system, especially T cells, in driving tumor progression and influencing patient outcomes. 
The emerging field of immunometabolism has shown that metabolic pathways play a pivotal role in regulating 
immune responses within the tumor microenvironment. This study aims to clarify the relationships between specific T 
cell phenotypes, circulating metabolites, and malignant brain tumors.

Methods  We utilized a multiple mendelian randomization approach to investigate the associations between T cell 
phenotypes and malignant brain tumors, as well as the role of plasma metabolites in mediating these interactions. 
Instrumental variables were selected based on stringent criteria, and multiple mendelian randomization methods 
were utilized to identify causal pathways and metabolites potentially mediating these effects.

Results  Our analysis identified significant associations between seven distinct T cell phenotypes, including various 
CD8 + and regulatory T cell subsets, and the presence of malignant brain tumors. We also identified 87 plasma 
metabolites correlated with these tumors. Notably, metabolites such as octadecanedioylcarnitine (C18-DC) and 
eicosanedioate (C20-DC) were implicated in modulating the risk of developing malignant brain tumors. Furthermore, 
metabolites such as 5-dodecenoate (12:1n7) and arachidonate (20:4n6) were found to influence tumor risk, 
particularly in relation to CD28 − CD8 + T cells.

Conclusion  The study identifies key T cell phenotypes and plasma metabolites involved in the pathogenesis of 
malignant brain tumors, offering potential biomarkers and therapeutic targets for future interventions.
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Introduction
Malignant brain tumors rank among the most aggres-
sive and lethal cancer, with limited therapeutic options 
and poor prognoses due to their subtle location and rapid 
progression [1, 2]. Recent studies have emphasized the 
role of the immune system, particularly T cells, in mod-
ulating tumor progression and patient outcomes [3, 4]. 
Antigen-primed T cells navigate through healthy tissues 
to locate their targets, accumulate within brain tumors, 
and perform cytotoxic functions with precise cellular 
accuracy; subsequently, they adapt to the tumor’s evolv-
ing molecular landscape through epitope spreading and 
differentiate into memory T cells capable of preventing 
delayed tumor recurrence [5, 6]. These findings provided 
a rationale for the complex interactions between T cells 
and malignant brain tumors.

Immunometabolism— a field exploring the interac-
tion between immune and metabolic processes — gain-
ing prominence. Aberrant metabolic remodeling is at 
the root of many dysfunctional immune responses, while 
modulating cellular metabolism offers potential thera-
peutic strategies to enhance or suppress immune func-
tions as needed [7]. Targeting metabolic pathways in T 
cells, such as the glycolytic pathway and pentose phos-
phate pathway, within the immunosuppressive microen-
vironment of malignant brain tumors, has demonstrated 
promise in clinical settings [7–9]. Specific metabolites, 
including branched-chain amino acids, fatty acids, and 
certain vitamins, have emerged as crucial regulators in 
various biological processes, including immune cell func-
tion and cancer metabolism [10, 11]. In the context of T 
cell activity, specific plasma metabolites may influence 
the risk and development of malignant brain tumors by 
modulating immune responses and tumor microenviron-
ment interaction. Therefore, elucidating and understand-
ing the causal relationship between T cells, metabolites, 
and malignant brain tumors could be very useful for 
the early identification, prevention, and management of 
malignant brain tumors in the future.

In this study, we aim to identify key metabolites that 
influence immune cell behavior and tumor develop-
ment through Mendelian randomization (MR), a robust 
approach leveraging genetic variations as instrumen-
tal variables to infer causal relationships between expo-
sures and outcomes, and we hope to discover potential 
biomarkers and therapeutic targets for this devastating 
disease.

Materials and methods
Study design
In this study, we first evaluated the relationship between 
731 immune cell phenotypes across 7 panels and malig-
nant brain tumors using two-sample MR. We then 
explored the potential mediating role of 1400 plasma 

metabolites in this association based on two-step MR 
(TSMR) and multivariable MR approaches (Fig. 1).

The study was performed according to the Reporting of 
Observational Studies in Epidemiology–Mendelian Ran-
domization (STROBE-MR) checklist. All data used were 
derived from publicly available datasets with prior ethical 
approval.

Source of data
The genetic data related to malignant brain tumors were 
obtained from the FinnGen consortium ​(​​​h​t​t​p​s​:​/​/​w​w​w​.​f​i​n​
n​g​e​n​.​f​i​/​e​n​​​​​)​, with the selected dataset bearing the identi-
fier C3_BRAIN_EXALLC, encompassing 1070 patients 
with malignant neoplasm of brain and 345,118 control 
patients, sourced from the R11 version of FinnGen [12]. 
A total of 731 immune phenotypes were analyzed in 
this study, encompassing various categories of immuno-
logical traits. These included absolute cell (AC) counts 
(n = 118), median fluorescence intensities (MFI) as mark-
ers of surface antigen expression (n = 389), morphological 
parameters (MP) (n = 32), and relative cell (RC) counts 
(n = 192). These features spanned diverse immune cell 
subsets, including B cells, conventional dendritic cells 
(cDCs), mature T cell stages, monocytes, myeloid cells, 
TBNK (T cells, B cells, and natural killer cells), and reg-
ulatory T cells, assessed across MFI, AC, and RC pan-
els. The MP traits specifically covered cDCs and TBNK 
panels. The original genome-wide association study 
(GWAS) on immune traits was performed using data 
from 3,757 European individuals with no overlapping 
cohorts. Genotyping was conducted using high-density 
arrays, capturing approximately 22 million single nucleo-
tide polymorphisms (SNPs), which were subsequently 
imputed with a Sardinian sequence-based reference 
panel [13]. Plasma metabolite GWAS data were derived 
from the Canadian Longitudinal Study on Aging, which 
included 8,299 participants. This dataset covered 1,091 
plasma metabolites and 309 metabolite ratios [14]. The 
GWAS for plasma metabolites was similarly performed 
on European individuals, ensuring no cohort overlap 
with other datasets.

Instrumental variable selection
In the MR analysis, we used SNPs strongly correlated 
with immune cell phenotypes and blood metabolite lev-
els as instrumental variables, uniformly using a thresh-
old of P < 1 × 10− 5 [15, 16]. Subsequently, SNPs exhibiting 
linkage disequilibrium were excluded according to the 
criteria of R^2 < 0.001 and an interval of 10,000 kb, after 
which weak instrumental variables were eliminated 
according to the F-statistic<10 [17].

https://www.finngen.fi/en
https://www.finngen.fi/en
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Statistical analysis
Five different MR analysis methods were used to assessed 
the causal relationship between exposure and outcome: 
Inverse Variance Weighted (IVW), Weighted Median, 
Simple Mode, Weighted Mode, and MR-Egger, and 
IVW was served as the primary method [18]. The MR-
Egger intercept test and MR-Pleiotropy Residual Sum 
and Outlier were used to evaluate horizontal pleiotropy, 
and Cochran Q test was used to perform heterogeneity 
assessment [19, 20]. Finally, A sensitivity analysis was 
performed using “leave-one-out” method to evaluate 
the influence of individual SNPs on the causal relation-
ship. Utilizing the TSMR method, we first computed the 
overall effect of immune cell phenotypes on malignant 
brain tumors (β0), the casual impact of immune cell phe-
notypes on metabolites (β1), and the casual impact of 
metabolites on malignant brain tumors (β2), followed by 
the calculation of the mediated effect (β1*β2), with the 
direct effect being represented as β 3 = β0 − β1*β2 [21]. All 
analyses were carried out using R software version 4.4.1.

Results
Genetic causality between immune cell phenotypes and 
malignant brain tumors
We identified 17,854 SNPs associated with immune cell 
phenotypes based on the established significance thresh-
olds and F-statistic criteria (Supplement Table 1). Seven 
T cell phenotypes were consistently associated with 
malignant brain tumors across five different MR meth-
ods, as determined by consistent odds ratios (OR < 1 or 
OR > 1). Preliminary analysis using the IVW method 
revealed significant associations for the following phe-
notypes: Human Leukocyte Antigen (HLA) DR on HLA 
DR + CD8 + T cell, CD127- CD8 + T cell Absolute Count, 
Naïve CD8 + T cell Absolute Count, Naïve CD8 + T cell 
%T cell, CD28- CD8 + T cell %CD8 + T cell, Secreting 
CD4 regulatory T cell Absolute Count, and Resting CD4 
regulatory T cell Absolute Count. Of these, six T cell phe-
notypes showed a negative correlation with malignant 
brain tumors, while one showed a positive correlation. 
The robustness of these findings was confirmed through 
pleiotropy tests, heterogeneity tests (P > 0.05) and leave-
one-out sensitivity analysis (Table 1).

Fig. 1  The mediation analysis: exposure-T cell; outcome- malignant brain tumors; mediator-plasma metabolites
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Genetic causality between plasma metabolites and 
malignant brain tumors
We identified 33,254 SNPs associated with plasma 
metabolites based on the same thresholds and F-statistic 
criteria (Supplement Table  2). Using MR methods, 87 
plasma metabolites were found to be significantly associ-
ated with malignant brain tumors, comprising 77 known 
metabolites and 10 unknown metabolites, such as phos-
phate to sulfate ratio, arachidonate (20:4n6) to oleate to 
vaccenate (18:1) ratio, 1-oleoyl-GPE (18:1) levels, retinol 
(Vitamin A) levels, 1-methylnicotinamide levels, phos-
phate to 5-oxoproline ratio, 5-dodecenoate (12:1n7) lev-
els, arachidonate (20:4n6) levels and 1-linoleoyl-GPE 
(18:2) levels. Among the known plasma metabolites, 32 
were associated with an increased risk of malignant brain 
tumors, while 45 showed a negative correlation with 
malignant brain tumors (Supplement Table 3).

Mediated effects of plasma metabolites on T cell-malignant 
brain tumors risk
To investigate the mediated effect of plasma metabo-
lites on the association between T cells and malignant 
brain tumors, we first performed MR analysis from T 
cell phenotypes to plasma metabolites using 7 selected 
T cell phenotypes as exposure factors and the 77 plasma 
metabolites as outcomes: we then analyzed the determi-
nation of the effect size β2 from metabolites to malignant 
brain tumors using the same methods. Finally, we identi-
fied 6pairs of metabolites that serve as mediators in the 
relationship between T cell phenotypes and malignant 
brain tumors (Fig. 2).

Octadecanedioylcarnitine (C18-DC) and Eicosane-
dioate (C20-DC) were found to negatively modulate 
malignant brain tumors concerning Naïve CD8 + T cell 
Absolute Count and Naïve CD8 + T cell %T cell (Medi-
ated effect, ME=-0.00370, -0.00336, -0.00317, -0.00271; 
Mediated proportion, MP = 10.8%,11.2%, 9.2%, 9.0%) 
(Table  2). 5-dodecenoate (12:1n7) levels, Arachidonate 
(20:4n6) levels, and Glycerol to glycerol 3-phosphate ratio 
exhibited negative regulatory effect on malignant brain 
tumors with respect to CD28 − CD8 + T cell % CD8 + T 
cell (ME=-0.02637, -0.01340, -0.01672; MP = 13.2%, 6.7%, 
8.4%) (Table 2). Glyco-beta-muricholate negatively regu-
lated malignant brain tumors in conjunction with HLA 

DR on HLA DR + CD8 + T cell and CD127- CD8 + T cell 
Absolute Count (ME=--0.00867, -0.00948; MP = 4.0%, 
4.6%), among others (Table 2).

Discussion
In our study, we identified a causal relationship between 
seven T cell phenotypes and malignant brain tumors. 
Mediation analysis using TSMR and multivariate MR 
methods revealed that six of these T cell phenotypes are 
potentially linked to malignant brain tumors through 
eight known plasma metabolites, with 5-dodecenoate 
(12: 1n7) exhibiting the highest mediation proportion 
(13.2%).

Our study highlights the mediating role of eico-
sanoids, a lipid mediator derived from polyunsaturated 
fatty acids (PUFAs) metabolism, in the causal relation-
ship between T cells and malignant brain tumors. In the 
tumor microenvironment, eicosanoids can exert pro- or 
anti-tumorigenic effects, depending on their concen-
tration and interactions with specific cell types. For 
example, prostaglandin E2, a prominent derivative of ara-
chidonate, has been recognized for its ability to inhibit 
the cytotoxic functions of T cells via G protein-coupled 
receptors or nuclear receptors, thus promoting cell prolif-
eration, angiogenesis, and immune evasion; arachidonate 
(20:4n6) metabolites may indirectly affect the metabolic 
requirements and functions of T cells by modulating glu-
tamine metabolism or glycolytic pathways [22, 23]. The 
balance between pro-inflammatory and immunosup-
pressive eicosanoids can greatly affect the effectiveness 
of T cell-driven tumor elimination, potentially leading to 
increased disease aggression and a diminished effective-
ness of immunotherapy treatments [24–26]. For example, 
in the context of glioblastoma multiforme, eicosanoids 
can enhance the expression of matrix metalloproteinases, 
enzymes that degrade the extracellular matrix, allow-
ing tumor cells to invade surrounding tissues and even 
migrate to distant sites [25, 27]. Targeting eicosanoid 
signaling could be a promising therapeutic strategy for 
malignant brain tumors, and cyclooxygenase-2 or lipox-
ygenase inhibitors, or antagonists of specific eicosanoid 
receptors, has shown promise in inhibiting tumor growth 
and improving patient outcomes in clinical trials [28, 
29]. However, further studies are needed to elucidate 

Table 1  MR analysis of immune cells and malignant brain tumors
Exposure Method Nsnp Beta Se P value Pleiotropy Heterogeneity
HLA DR on HLA DR + CD8 + T cell IVW 20 -0.216 0.082 0.0085 0.576 0.498
CD127-CD8 + T cell Absolute Count IVW 13 -0.207 0.079 0.0087 0.448 0.805
Naïve CD8 + T cell Absolute Count IVW 28 -0.034 0.014 0.0146 0.795 0.278
Naïve CD8 + T cell %T cell IVW 28 -0.030 0.012 0.0152 0.282 0.858
CD28-CD8 + T cell %CD8 + T cell IVW 23 -0.199 0.085 0.0190 0.655 0.934
Secreting CD4 regulatory T cell Absolute Count IVW 23 -0.058 0.027 0.0290 0.599 0.060
Resting CD4 regulatory T cell Absolute Count IVW 25 0.122 0.062 0.0473 0.449 0.337
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Table 2  Mendelian randomization analyses of the causal effects between T cells, plasma metabolites and malignant brain tumors
T cell Metabolite Outcome Mediated 

Effect
Mediated 
proportion

Naïve CD8 + T cell Absolute Count Octadecanedioylcarnitine (C18-DC) levels malignant brain tumors -0.00370 10.8%
Eicosanedioate (C20-DC) levels malignant brain tumors -0.00317 9.2%

Naïve CD8 + T cell %T cell Octadecanedioylcarnitine (C18-DC) levels malignant brain tumors -0.00336 11.2%
Eicosanedioate (C20-DC) levels malignant brain tumors -0.00271 9.0%

CD28 − CD8 + T cell % CD8 + T cell 5-dodecenoate (12:1n7) levels malignant brain tumors -0.02637 13.2%
Arachidonate (20:4n6) levels malignant brain tumors -0.01340 6.7%
Glycerol to glycerol 3-phosphate ratio malignant brain tumors -0.01672 8.4%

HLA_DR_on_HLA_DR+_CD8+_T_cell Glyco-beta-muricholate levels malignant brain tumors -0.00867 4.0%
Secreting CD4 regulatory T cell Absolute 
Count

17alpha-hydroxypregnanolone glucuronide 
levels

malignant brain tumors -0.00344 5.9%

CD127- CD8 + T cell Absolute Count Tyrosine levels malignant brain tumors -0.0182 8.8%
Glyco-beta-muricholate levels malignant brain tumors -0.00948 4.6%

Fig. 2  A forest plot of the six sets of plasma metabolites exhibiting “T cell phenotype-malignant brain tumors” mediating effects. OR, odds ratio; CI, con-
fidence interval. (A) CD28 − CD8 + T cell % CD8 + T cell-5-dodecenoate (12:1n7) /Arachidonate (20:4n6)/Glycerol to glycerol 3-phosphate ratio-malignant 
brain tumors. (B) Naïve CD8 + T cell %T cell-Octadecanedioylcarnitine (C18-DC)/Eicosanedioate (C20-DC)-malignant brain tumors. (C) Secreting CD4 
regulatory T cell Absolute Count-17alpha-hydroxypregnanolone glucuronide-malignant brain tumors. (D) Naïve CD8 + T cell Absolute Count-Octadec-
anedioylcarnitine (C18-DC)/Eicosanedioate (C20-DC)-malignant brain tumors. (E) CD127- CD8 + T cell Absolute Count-Tyrosine/Glyco-beta-muricholate-
malignant brain tumors. (F) HLA_DR_on_HLA_DR+_CD8+_T_cell-Glyco-beta-muricholate-malignant brain tumors
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the complexities of eicosanoid signaling in brain tumor 
microenvironments and to develop targeted therapies 
that minimize adverse effects.

Consistent with previous studies, the reduction and 
impaired functions of CD8 + cytotoxic T cells (CTLs) 
infiltration was pivotal in the pathogenesis of malignant 
brain tumors, such as glioblastoma, medulloblastoma 
and meningioma [30, 31]. Given the immunosuppres-
sive tumor microenvironment and the low metabolic 
demands of circulating naïve T cells, we focused on 
their potential to differentiate into effective CTLs. As 
expected, it was CD8 + T cells that were causally associ-
ated with malignant brain tumors in this study, including 
HLA DR on HLA DR + CD8 + T cell, CD127- CD8 + T cell, 
and CD28- CD8 + T cell. Glioblastoma stem cells express 
HLA ligands, and human glioblastoma cell lines exhibit 
novel HLA peptides derived from cancer-testis antigens, 
which are therapeutic targets in ongoing clinical trials for 
glioblastoma [32, 33]. Metabolites like glyco-beta-muri-
cholate influence intestinal flora and may exert effects via 
the brain-gut axis by activating bile acid receptors such 
as farnesoid X receptor and G protein-coupled bile acid 
receptor 5 [34, 35]. Tyrosine, a precursor for the synthe-
sis of catecholamines and thyroid hormones, is necessary 
for T cell receptor signaling via protein phosphorylation, 
and dysregulated tyrosine metabolism is implicated in 
glioma aggressiveness and therapeutic resistance [36–
39]. Therefore, understanding the causal mechanisms 
linking tyrosine metabolism to immune regulation and 
tumorigenesis could provide new avenues for therapeutic 
interventions targeting tyrosine-related pathways. Addi-
tionally, it is important to highlight that HLA DR + CD8⁺ 
T-cells is not a routinely studied immune subpopulation. 
Lisowska et al. identified CD8⁺ HLA-DR⁺ T-cells as a sub-
population of T cells that are inactivated during chronic 
kidney disease [40], and Zhu et al. reported that CD8⁺ 
HLA-DR⁺ T-cells were positively correlated with total 
HIV DNA during inhibitory antiretroviral therapy [41]. 
These studies suggest that CD8⁺ HLA-DR⁺ T-cells are an 
indicator of immune activation, particularly in inflamma-
tory related conditions. CD28- CD8 + T cells, a distinct 
subset of regulatory T cells, are abundant in glioblastoma 
patients [42], and play a role in inhibiting T cell activa-
tion, reducing proinflammatory cytokine secretion from 
activated T cells, and inducing apoptosis of activated T 
cells in vitro [43]. Glycerol-3-phosphate biosynthesis is 
an endogenous NAD + regeneration pathway that inhib-
its neuroinflammation [44], however, no studies between 
5-dodecenoate (12:1n7) levels and neural tumors have 
been found. Therefore, more research is needed to 
understand the mediating metabolites that play a role in 
the causal relationship between CD28- CD8 + T cells and 
malignant brain tumors.

Within the population of tumor-specific tumor-
infiltrating lymphocytes, Tregs are identified as a pro-
tumorigenic subset, and their direct interaction with 
tumor-specific CTLs is a major focus for immune moni-
toring protocols in current immunotherapeutic strate-
gies. In gliomas and medulloblastomas, Treg expansion, 
mediated by pathways such as mTOR and indoleamine 
deoxygenase expression, contributes to immunosuppres-
sion, shortened survival, and earlier recurrence [45–47]. 
17alpha-hydroxypregnanolone glucuronide, a neuros-
teroid derivative, can affect central nervous system func-
tions via glucuronidation process, such as modulating 
the activity of neurotransmitter receptors [48, 49]. Acti-
vated CD4 + T cells are primarily dependent on glucose 
as their oxidative fuel, and Treg cells are partially depen-
dent on glucose transporters for expansion and survival 
[50, 51]. The modulation of Treg activity by 17alpha-
hydroxypregnanolone glucuronide may occur through its 
interaction with steroid hormone receptors expressed on 
Tregs. This interaction could enhance Treg proliferation 
or the expression of immunosuppressive cytokines, such 
as IL-10 and TGF-β, thereby contributing to an immuno-
suppressive environment.

Our study represents the first attempt to employ MR 
analysis to investigate the causal relationship between T 
cells and malignant brain tumors using the most com-
prehensive and up-to-date GWAS data, and to employ 
mediation analysis to explore the potential nonlinear 
association of plasma metabolites. However, our study 
still faces several limitations. Firstly, although the Finn-
Gen database has advantages in data timeliness, its focus 
on a specific ethnic group and its dataset size limit the 
generalizability of our findings. Secondly, the causal rela-
tionship between T cells and malignant brain tumors 
is likely influenced by multiple mediating factors, and 
there may still be unidentified confounders that could 
introduce bias into our results. In addition, some of the 
immune subgroups we reported, such as CD8⁺ HLA-
DR⁺ T-cells, have been rarely studied in tumors before, 
although this may limit the generality of this study, it also 
suggests that the potential role of the immune subgroups 
in tumors is worth exploring. Finally, our use of malig-
nant brain tumors as a composite outcome rather than 
focusing on specific tumor types may reduce the specific-
ity of our conclusions, but because of the tumor-suppres-
sive properties of the brain microenvironment, an overall 
picture of the interaction between central nervous system 
tumors and the immune system is critical to understand-
ing the potential mechanisms of malignant brain tumors.

Conclusion
In conclusion, our study provides genetic evidences of the 
causal relationships between T cell phenotypes, plasma 
metabolites, and malignant brain tumors. We identified a 
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reduction in CTLs infiltration and highlighted the poten-
tial role of eicosanoid compounds in malignant brain 
tumors. These findings may provide new insights into 
metabolic pathways that could be targeted to enhance 
the efficiency of T cell-based immunotherapies for brain 
tumors.
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