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Abstract
Background Effects of subthalamic nucleus deep brain stimulation (STN-DBS) on neuropsychiatric symptoms of 
Parkinson’s disease (PD) remain debated. Sensor technology might help to objectively assess behavioural changes 
after STN-DBS.

Case presentation 5 PD patients were assessed 1 before and 5 months after STN-DBS with the Movement Disorders 
Society Unified Parkinson’s Disease Rating Scale part III in the medication ON (plus postoperatively stimulation ON) 
condition, the Montreal Cognitive Assessment, the Questionnaire for Impulsive-Compulsive Behaviors in Parkinson’s 
Disease Rating Scale present version, the Hospital Anxiety and Depression Scale and the Starkstein Apathy Scale. 
Steps taken per hour, nighttime spent in bed and time spent outside were monitored with a smartwatch and ambient 
sensors placed in patient homes for an average of 20 days pre- and postoperatively. Postoperative improvement in 
ICDs and concomitant anxious-depressive symptoms was observed in 3 patients and was accompanied by a decrease 
in steps taken per hour, as well as an increase in nighttime spent in bed. In the two patients without baseline ICDs, 
mild anxiety and apathy improved postoperatively, and no new neuropsychiatric symptoms occurred. Steps taken per 
hour did not decrease in these cases and nighttime spent in bed improved in one of the patients, but decreased in 
the other, who had experienced pain during OFF-phases at night before STN-DBS.

Conclusion Changes in neuropsychiatric symptoms are associated with distinct activity patterns after STN-DBS, and 
wearable and ambient sensors may aid to capture those gradual shifts in behavior.

Keywords Parkinson’s disease, Deep brain stimulation, Neuropsychiatric symptoms, Sensor technology, Objective 
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Background
Parkinson’s disease (PD) is the second most common 
neurodegenerative disease and is defined by hallmark 
motor symptoms including bradykinesia, rigidity, tremor 
and postural instability [1, 2]. Neuropsychiatric symp-
toms such as depressive symptoms, anxiety, apathy, 
impulse control disorders (ICDs), and cognitive decline 
have a high prevalence in PD and negatively impact qual-
ity of life of affected individuals [3, 4]. Nevertheless, these 
neuropsychiatric symptoms are under recognized and 
undertreated [4, 5]. While depression, anxiety and apa-
thy have been linked to a lack of dopamine, ICDs have 
been associated with an overstimulation of mesolimbic 
pathways caused by dopaminergic medications used to 
treat PD [6–8]. Patients with advanced PD often suffer 
from motor and neuropsychiatric fluctuations. At the 
peak dose of the dopaminergic medication, they experi-
ence dyskinesia, euphoria and impulse control disorders, 
whilst during wearing off of dopaminergic medication, 
bradykinesia, rigidity, tremor, anxiety, depressive symp-
toms and apathy prevail [9]. Subthalamic nucleus deep 
brain stimulation (STN-DBS) is a safe and effective treat-
ment for the motor fluctuations and dyskinesia associated 
with advanced PD [10]. However, its effects on neuropsy-
chiatric symptoms remain debated. Some studies report 
an improvement of ICDs and depressive symptoms [11, 
12], whilst others describe stimulation-induced hypo-
mania [13], motor impulsivity [14–16] and postoperative 
apathy [17]. To assess neuropsychiatric symptoms, cli-
nicians must rely on reports of patients and caregivers, 
which can be inaccurate due to a lack of insight for grad-
ual changes in behavior [18]. A potential way of overcom-
ing this issue in the future is the additional use of sensor 
technology to assess behavioral changes. Studies have 
proven that wearable and ambient sensors can objectively 
assess motor symptoms in PD and that long-term moni-
toring of activity patterns in subjects with neurodegen-
erative disease is possible [19, 20]. The aim of this case 
series was to evaluate whether wearable and ambient 
sensors can aid in capturing changes in neuropsychiatric 
symptoms before and after STN-DBS.

Case presentations
Case selection
Five patients with a diagnosis of idiopathic PD [2] and 
planned STN-DBS surgery were recruited at the Move-
ment Disorders Centre at the University Hospital of 
Bern within the framework of a larger study (KEK: 
2020 − 01777). Written consent was obtained from all 
participants in accordance with the Declaration of Hel-
sinki. The cases were selected so that different motor 
(tremor-dominant, akinetic-rigid and mixed PD) and 
neuropsychiatric (patients with ICDs versus patients 
without ICDs) profiles could be studied. Selection criteria 

for STN-DBS and surgical procedures have previously 
been described in detail [21]. Participants underwent 
several experimental procedures, and sensor recordings 
were performed for an average duration of 19.2±4.3 days 
at 31.6±13.9 days before and 20.8±7.1 days at 161.4±19.7 
days after STN-DBS. The procedures relevant to this case 
series are listed below.

Neurological and neuropsychiatric assessments
Motor symptom burden was assessed with the Move-
ment Disorders Society Unified Parkinson’s Disease Rat-
ing Scale (MDS-UPDRS) [22] part III in the medication 
ON (plus postoperatively stimulation ON) condition. 
Levodopa equivalent daily dose (LEDD) and dopamine 
agonist (DA) daily dose were calculated. The neuropsy-
chiatric assessment included the Montreal Cognitive 
Assessment (MoCA) [23], the Questionnaire for Impul-
sive-Compulsive Behaviors in Parkinson’s Disease Rating 
Scale (QUIP-RS) [24] present version, Hospital Anxiety 
and Depression Scale (HADS) [25] and the Starkstein 
Apathy Scale (SAS) [26].

Sensor recordings
Sensor recordings consisted of a smartwatch and ambi-
ent sensors, which have previously shown good long-
term acceptance by patients [27]. The smartwatch was 
worn on the wrist during waking hours. Contactless 
low-energy Bluetooth (BLE) ambient sensors were placed 
in participants homes and a pressure-sensitive bed sen-
sor was placed under the mattress. All sensor recordings 
were performed simultaneously. For detailed information 
on models and recordings, see supplementary material.

Analyses were performed with Python 3.10 (Python 
Software Foundation, Wilmington USA). To visualize 
the neuropsychiatric profile of patients, spider plots were 
created for each patient. The maximum values of the 
spider plot axes were set to reflect the maximum scores 
obtained by the patients. Periods were classified as time 
spent outside the home when no ambient sensor BLE sig-
nal was detected by the smartwatch for more than 180 s. 
Based on this, the percentage of watch wear time spent 
outside was calculated. Nighttime spent in bed (7pm to 
9am) was extracted from the user interface of the bed 
sensor. Daytime spent in bed was not analyzed, since 
periods spent in bed shorter than 2 h were recorded, but 
not saved in the user interface. Steps taken per hour were 
normalized with respect to the total watch wearing time.

Group level outcomes
Baseline characteristics and group level results of the 
neurological and neuropsychiatric assessments are sum-
marized in Table  1. Overall, motor symptom burden 
decreased after STN-DBS and dopaminergic medication 
was reduced. Anxiety, depressive symptoms, and ICDs 
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improved. Figure  1 shows neuropsychiatric profiles and 
different activity measures for each patient.

Case 1
Patient 1 was a 70-year-old man with tremor-dominant 
PD and a disease duration of 7 years. Preoperatively, he 
had mild anxiety, which was characterized by worrying 
about daily activities, which had become difficult to per-
form due to his tremor. The rest of the neuropsychiatric 
scores and cognitive screening did not show any abnor-
malities (MoCA 29/30). He remained very active despite 
his tremor, enjoying home cooking and baking. He slept 
well at night. At follow-up, his anxiety improved (HADS-
anxiety 10 to 3), and no new neuropsychiatric symptoms 
occurred. Motor symptoms improved and dopaminergic 
medication was reduced (LEDD 820 mg/d to 420 mg/d, 
MDS-UPDRS III 17 to 16). Nighttime spent in bed 
decreased (9.9±0.5 h to 7.4±1.6 h), steps taken per hour 
increased (206±166 to 236±151), and time spent outside 
remained relatively stable (19±13% to 17±4%).

Case 2
Patient 2 was a 53-year-old man with akinetic-rigid 
PD and a disease duration of 10 years. Preoperatively, 
he had pathological ICDs, which were characterized 
mainly by excessive hobbyism and shopping. He spent 
his free time engaged with various projects (woodwork-
ing, fixing motorcycles, renovating his house), working 
day and night, sometimes using dangerous tools such 
as saws during OFF-phases. His mood was elevated, 
and he claimed he did not need more than a few hours 
of sleep. He reported anxiety and depressive symptoms 

Table 1 Demographic data and pre- and postoperative 
neurological, neuropsychiatric, and cognitive measures

Baseline Follow-up
n 5 5
Age 59.0 (± 9.9) *
Gender (male/female) 1/4 *
Disease duration (years) 8.4 (± 1.8) *
MDS-UPDRS part III 25.8 (± 13.9) 

(med-ON)
14.0 (± 6.7) 
(med-ON, 
stim-ON)

LEDD (mg/day) 1432.0 (± 624.6) 545.0 
(± 253.5)

DA daily dose (mg/day) 212.0 (± 184.2) 80.0 (± 63.2)
SAS 8.8 (± 3.7) 9.6 (± 4.7)
HADS-A 9.0 (± 2.0) 3.4 (± 2.2)
HADS-D 7.0 (± 2.0) 2.2 (± 1.9)
QUIP-RS present 13.8 (± 12.8) 6.4 (± 9.7)
MoCA 27.6 (± 2.3) 27.2 (± 1.3)
Reported values except for gender are means (± standard deviation); 
LEDD = levodopa equivalent daily dose; DA = dopamine agonist daily dose; 
MDS-UPDRS III = Movement Disorders Society Unified Parkinson’s Disease 
Rating Scale part III assessed on medication at baseline and on medication 
plus stimulation at follow-up; HADS-A = Hospital Anxiety and Depression Scale 
Subscale Anxiety; HADS-D = Hospital Anxiety and Depression Scale Subscale 
Depression; QUIP-RS = Questionnaire for Impulsive-Compulsive Disorders in 
Parkinson’s Disease Rating Scale present version; MoCA = Montreal Cognitive 
Assessment

Fig. 1 (A) Neuropsychiatric profiles of individual patients with the lighter area representing the baseline before DBS (deep brain stimulation) and the 
darker area follow-up with DBS; QUIP-RS = Questionnaire for Impulsive-Compulsive Disorders in Parkinson’s Disease Rating Scale present version; HADS-
A = Hospital Anxiety and Depression Scale Anxiety Subscale; HADS-D = Hospital Anxiety and Depression Scale Depression Subscale; SAS = Starkstein 
Apathy Scale. (B, C, D) Activity profiles for each participant for steps taken per hour, time spent outside, and nighttime spent in bed
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associated with OFF-phases, but no apathy or impair-
ment in cognitive screening (MoCA 30/30). At follow-up, 
neuropsychiatric symptoms improved (QUIP-RS 19 to 
2, HADS-anxiety 12 to 0, HADS-depression 9 to 0) and 
were no longer pathological. Motor symptoms improved 
and dopaminergic medication was reduced (LEDD 
1430 mg/d to 160 mg/d, MDS-UPDRS III 17 to 8). Night-
time spent in bed increased (5.00±1.5  h to 8.0±1.0  h), 
steps taken per hour decreased (346±84 steps to 257±140 
steps) and time spent outside slightly increased (45±23% 
to 52±18%).

Case 3
Patient 3 was a 63-year-old man with mixed akinetic-
rigid and tremulous PD and a disease duration of 9 years. 
Preoperatively, he had pathological ICDs, which included 
binge eating and hobbyism (excessive computer use). He 
was feeling wide awake at night, spending his time on the 
computer and sleeping rarely more than a few hours. Fur-
thermore, he reported mild anxiety symptoms and cogni-
tive testing revealed mild cognitive impairment (MoCA 
24/30). Postoperatively, ICDs and anxiety symptoms were 
no longer pathological (QUIP-RS 20 to 7, HADS-anxiety 
8 to 6). Apathy increased (SAS 7 to 12) but remained 
under the cut-off. Motor symptoms improved and dopa-
minergic medication was reduced (LEDD 2400  mg/d to 
650  mg/d, MDS-UPDRS III 50 to 21). Nighttime spent 
in bed increased (4.4±1.6 h to 9.6±2.8 h), steps taken per 
hour showed a tendency to decrease (39±24 to 28±14) 
and time spent outside remained stable (12±5% to 
11±6%).

Case 4
Patient 4 was a 64-year-old woman with akinetic-rigid 
PD and a disease duration of 10 years. Preoperatively, she 
had mild apathy, just below cut-off anxiety and depres-
sive symptoms, but no ICDs or impairment in cognitive 
screening (MoCA 27/30). She reported a lack of energy 
and pleasure for everyday activities, feeling limited by 
her PD symptoms. At night, she experienced pain dur-
ing OFF-phases. Postoperatively, apathy, anxiety and 
depressive symptoms decreased (SAS 14 to 10, HADS-
anxiety 7 to 4, HADS-depression 7 to 2) and were below 
cut-off. Motor symptoms improved and dopaminergic 
medication was reduced (LEDD 950 mg/d to 740 mg/d, 
MDS-UPDRS III 25 to 19). Time spent in bed increased 
(6.0±3.0  h to 9.7±1.4  h), and steps taken per hour and 
time spent outside slightly increased (56±27 to 64±26; 
18±13% to 24±22%).

Case 5
Patient 5 was a 45-year-old man with akinetic-rigid PD 
and a disease duration of 6 years. Preoperatively, he had 
multiple ICDs, including pathological gambling in online 

casinos, excessive shopping, hobbyism with a newfound 
interest in painting, increased libido and appetite. He 
reported sleeping well, but getting up very early even on 
days that he did not go to work. He had mild anxiety and 
depressive symptoms associated with OFF-phases, but 
no apathy or impairment in cognitive screening (MoCA 
28/30). At follow-up, anxiety and depressive symptoms 
improved and were below cut-off (HADS-anxiety 8 to 
4, HADS-depression 9 to 4), ICDs improved but were 
still above cut-off (QUIP-RS 29 to 23) and mild apathy 
manifested (SAS 10 to 16). Motor symptoms improved 
and dopaminergic medication was reduced (LEDD 
1560 mg/d to 755 mg/d, MDS-UPDRS III 20 to 6). Night-
time spent in bed increased (7.4±1.8  h to 10.0±1.0  h), 
steps taken per hour showed a tendency to decrease 
(282±130 to 268±140), and time spent outside slightly 
decreased (54±22% to 48±18%).

Discussion
This case series evaluated the potential of sensor technol-
ogy to record behavioral activity patterns associated with 
neuropsychiatric symptoms before and after STN-DBS.

The 5 presented cases revealed heterogeneous neuro-
psychiatric and activity profiles both before and after 
STN-DBS, stressing the importance of intra-individual 
comparisons. Interestingly, despite the motor improve-
ment, not all patients showed an increase of steps taken 
per hour and time spent outside. In three patients, an 
improvement of baseline ICDs and anxious-depressive 
symptoms during medication OFF phases was associated 
with a decrease in steps taken per hour and a marked 
increase in time spent in bed during the night. Due to 
the design of the study, it is not possible to fully disen-
tangle the distinct effect of anxiety, depression and ICDs 
on sensor measures. However, research shows that ICDs 
are associated with and increased drive during the day 
and nocturnal hyperactivity (decreased need for sleep 
with individuals pursuing ICD and related behaviors 
during the night) [28, 29]. For depression, the link rela-
tion with sleep is less clear, with some patients experi-
encing excessive sleeping as a symptom of depression 
and others suffering from insomnia [30]. As for overall 
activity, anxiety, depressive symptoms and apathy are 
associated with a decrease in goal-oriented behavior [29, 
31]. For example, before STN-DBS, patient 2 showed an 
increased drive with hobbyism (sports, fixing motor-
cycles, and woodworking) and nocturnal hyperactivity 
even during off phases. Despite marked motor improve-
ment after the operation, he spent significantly less 
time performing his hobbies and slept during the night 
rather than being active. Therefore, at least in the pres-
ent three cases with preoperative ICDs, there seems to 
be a link between a postoperative improvement in ICDs, 
increase in time spent in bed (reflecting a normalization 
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of nocturnal sleep) and decrease in steps taken per hour 
(reflecting a decrease in activity during the day). In the 
two patients without ICDs at baseline, mild anxiety and 
apathy improved postoperatively, and no new neuropsy-
chiatric symptoms occurred. Contrary to the patients 
with preoperative ICDs, steps taken per hour did not 
decrease. Nighttime spent in bed improved in one of 
those patients, but decreased in the other, who had expe-
rienced pain at night associated with off phases which 
lead to insomnia before STN-DBS. Pain has been associ-
ated with sleep disturbances in PD [32], which highlights 
the importance of assessing pain.

At first glance, the finding that ICDs improve after 
STN-DBS might seem to contradict studies demon-
strating that motor impulsivity is worse after STN-DBS 
[14–16]. However, other studies show that the impact of 
STN-DBS on motor inhibition depends on the stimula-
tion site within the STN, with ventral STN leading to 
motor impulsivity and dorsal stimulation improving 
motor inhibition [33–37]. Importantly, motor impulsivity 
is only one facet of impulsivity, which is a multi-faceted 
construct, involving different cognitive processes, with 
STN-DBS showing different effects on different measures 
of impulsivity [38]. ICDs such as hypersexuality, binge 
eating, pathological gambling and shopping are not asso-
ciated with motor impulsivity in inhibition tasks [39]. In 
the majority of available studies, ICDs show improvement 
after STN-DBS [40]. This decrease in ICDs is associated 
with a decrease in dopaminergic medications, which are 
known to be the biggest risk factor for ICDs [11, 40–42]. 
At the same time, a marked reduction of dopaminergic 
medication has been associated with apathy [11, 43, 44]. 
In the present five patients, dopaminergic medications 
were carefully tapered after DBS surgery to avoid postop-
erative apathy, with patients remaining on a low dose of 
levodopa and dopamine agonists. The observed improve-
ment in depressive symptoms and anxiety is in line with 
meta-analyses showing an improvement in anxiety and 
depression following STN-DBS [45, 46]. Nevertheless, 
the follow-up with sensor recordings should be extended 
in further studies, since research shows that apathy may 
occur gradually over time due to dopaminergic desensiti-
zation [44, 47, 48].

In summary, case reports shows that especially the 
assessment of nocturnal behavior with a bed sensor is 
a promising measure for behavioral changes after STN-
DBS, showing meaningful associations with neuropsy-
chiatric symptoms, motor burden and dopaminergic 
medication. However, regarding the bed sensor, a limita-
tion of this study is that due to the user interface, daytime 
naps or shorter sleep intervals during the night could not 
be analyzed. Furthermore, no detailed objective infor-
mation on sleep parameters (e.g. time spent sleeping, 
different sleep stages) and reasons for poor sleep (e.g. 

hyperactivity versus pain) could be obtained. So far, mon-
itoring specific aspects of asleep with sensor technology 
at home lacks reliability compared to polysomnography 
used in clinic [49, 50], but in the future technological 
advancements might help bridging this gap. Therefore, 
additionally to sleep sensors, interviews or scales to 
assess sleep quality and quantity should be used. Regard-
ing the other sensors, steps taken per hour have also 
proved to be a useful measure in this study, whereas the 
time spent outside seemed to be less sensitive to change. 
Importantly, sensor technology allows to monitor grad-
ual changes in behavior, which are often difficult to assess 
retrospectively in clinical practice. However, the interpre-
tations of activity patterns should always take the context 
of the individual into consideration. To further explore 
the complex interplay between motor symptoms, neuro-
psychiatric symptoms, dopaminergic medications, STN-
DBS, and their impact on activity and sleep patterns, 
studies with bigger patient numbers and more detailed 
statistical analyses, are needed.

In conclusion, this case series illustrates as a proof of 
principle that objective data provided by wearable and 
ambient sensors can be a useful addition to subjective 
answers provided by patients in questionnaires or inter-
views to evaluate and quantify gradual changes in behav-
ioral activity patterns in PD, showing different STN-DBS 
outcomes in patients with different neuropsychological 
profiles. Objective assessment of behavioral activity with 
wearable sensors therefore shows potential to improve 
neuropsychiatric evaluation in the future.
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