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Abstract 

The COVID-19 pandemic and increased demands for neurologists have inspired the creation of remote, digital-
ized tests of neurological functions. This study investigates two tests from the Neurological Functional Tests Suite 
(NeuFun-TS) smartphone application, the “Postural Sway” and “Pronator Drift” tests. These tests capture different 
domains of postural control and motoric dysfunction in healthy volunteers (n = 13) and people with neurological 
disorders (n = 68 relapsing–remitting multiple sclerosis [MS]; n = 21 secondary progressive MS; n = 23 primary pro-
gressive MS; n = 13 other inflammatory neurological diseases; n = 21 non-inflammatory neurological diseases; n = 4 
clinically isolated syndrome; n = 1 radiologically isolated syndrome). Smartphone accelerometer data was transformed 
into digital biomarkers, which were filtered in the training cohort (~ 80% of subjects) for test–retest reproducibility 
and correlations with subdomains of neurological examinations and validated imaging biomarkers. The independent 
validation cohort (~ 20%) determined whether biomarker models outperformed the best single digital biomarkers. 
Postural sway acceleration magnitude in the eyes closed and feet together stance demonstrated the highest reli-
ability (ICC = 0.706), strongest correlations with age (Pearson r <= 0.82) and clinical and imaging outcomes (r <= 0.65, 
p < 0.001) and stronger predictive value for sway-relevant neurological disability outcomes than models that aggre-
gated multiple biomarkers (coefficient of determination  R2 = 0.46 vs 0.38). The pronator drift test only captured 
cerebellar dysfunction, had less reproducible biomarkers, but provided additive value when combined with postural 
sway biomarkers into models predicting global scales of neurological disability. In conclusion, a simple 1-min postural 
sway test accurately measures body oscillations that increase with natural aging and differentiates them from abnor-
mally increased body oscillations in people with neurological disabilities.
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Introduction
In the wake of the Coronavirus pandemic, the need for 
remote patient care is clear. Communication technolo-
gies have opened the doors to telemedicine, but hands-on 
aspects of clinical evaluation remain to be replicated. In 
particular, neurological examinations could benefit from 

a remote alternative. Full neurological exams are difficult 
to complete in busy clinical settings and can be subjective 
in nature. Consequently, functional tests such as timed-
walk tests or the 9-hole peg test have been performed 
in clinical research to bolster clinician-driven disability 
scales. Digitalization of these tests offers advantages and 
some tests have been aggregated into suites adapted for 
smartphones and tablets [1–5]. To our knowledge, the 
Neurological Function Tests Suite (NeuFun-TS), which is 
comprised of sixteen smartphone tests measuring various 
neurological domains, provides the most comprehensive 
assessment of nervous system functionality. NeuFun-TS 
outcomes correlate with Multiple Sclerosis (MS) disabil-
ity scales, brain magnetic resonance imaging (MRI) data, 
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and targeted subdomains of gold-standard neurological 
examinations [6, 7]. This study examines the NeuFun-TS 
Postural Sway and Pronator Drift tests.

The Postural Sway test evaluates human upright stance, 
which is fundamentally unstable. The brain must con-
tinuously integrate multisensory input from visual, ves-
tibular, and proprioceptive systems to maintain balance. 
Since the mid-twentieth century, postural sway tests have 
been performed to gain insight into these subsystems. In 
a typical test, a subject stands in different positions for a 
short time (e.g., 30  s); positions increase in difficulty by 
inhibiting sensory input and/or increasing stance insta-
bility (i.e., standing on foam, closing eyes) while a force 
plate or body-worn accelerometer records sway data.

The Pronator Drift test examines sustained supination 
of outstretched arms (i.e., palms facing upwards) in the 
absence of visual stimulus. This test records involuntary 
movements, such as tremors, and stereotypical prona-
tion, elbow flexion and downward drift, which may reveal 
subclinical motoric dysfunction.

Both tests use a smartphone-embedded accelerometer. 
While force plates were the gold-standard for measuring 
postural sway, accelerometers mimic force plate meas-
urements with comparable reliability [8]. Furthermore, 
accelerometry-derived measurements can differentiate 
between control groups and people with Parkinson’s Dis-
ease, Huntington’s Disease, MS, and other neurological 
diseases [9–11]. Similarly, accelerometry quantifies hand 
tremor and sway to distinguish healthy subjects from 
people with Parkinson’s Disease, acute ischemic stroke, 
and essential tremor [12, 13].

However, while qualitatively distinguishing “healthy 
volunteers” (HV) from people with identified neurologi-
cal disease is important, disability exists on a spectrum; 
more useful digital outcomes quantify neurological dis-
ability in a subject with longitudinal accuracy to measure 
neurological functions agnostically and longitudinally, 
capable of measuring both disability progression and 
therapeutic effect. Towards this purpose, some studies 
correlated postural sway measurements with neurologi-
cal disability scales, such as the Expanded Disability Sta-
tus Scale (EDSS) [14]. While EDSS serves as a progression 
outcome in MS clinical trials, this ordinal scale (rang-
ing from 0–10) is insensitive for most research applica-
tions that use smaller patient cohorts because a minority 
actually progresses on EDSS yearly; e.g., in the ORA-
TORIO clinical trial only 39.3% of primary-progressive 
MS (PPMS) patients randomized to placebo progressed 
over 4.2  years of trial duration [15], achieving annual 
progression rates under 10%. Thus, granular scales like 
Combinatorial Weight-Adjusted Disability Score (Com-
biWISE,  continuous scale from 0–100) and NeurEx™ 
(continuous scale from 0 to theoretical maximum of 

1349) that strongly correlate with EDSS but measure dis-
ability progression in 6–12 months are better suited for 
research applications, including differentiating disability 
in specific subdomains of the neurological examination 
[16, 17].

This study analyzes accelerometry data from the Neu-
Fun-TS Postural Sway and Pronator Drift tests to gener-
ate digital biomarkers, assess their test–retest reliability 
and evaluate their correlation with gold-standard clinical 
outcomes and validated semiquantitative imaging bio-
markers. We also explored whether aggregating reliable 
digital biomarkers into machine learning (ML) optimized 
models provide greater clinical value than the best single 
biomarkers from each test.

Materials and methods
Participants
This study was approved by the Institutional Review 
Board of the National Institutes of Health (NIH). All 
data were collected under protocols: Targeting Residual 
Activity by Precision, Biomarker-Guided Combination 
Therapies of Multiple Sclerosis (clinicaltrials.gov iden-
tifier NCT03109288) and Comprehensive Multimodal 
Analysis of Neuroimmunological Diseases of the Cen-
tral Nervous System (NCT00794352). All participants 
signed paper or digital informed consent and provided 
their sex, age, height, and weight. After unblinding diag-
nostic categories, the cohort consisted of people with 
MS (n = 112), Other Inflammatory Neurological Diseases 
(OIND, n = 13), Non-Inflammatory Neurological Dis-
eases (NIND, n = 21), Clinically Isolated Syndrome (CIS, 
n = 4), Radiologically Isolated Syndrome (RIS, n = 1) and 
13 HV. Apart from 7 self-declared HV that participated 
in the “smartphone only substudy cohort”, the remaining 
157 study subjects received full neurological and physi-
cal examinations, laboratory testing (blood and cerebro-
spinal fluid to make/confirm diagnosis) and brain MRI 
within 1–48  h of NeuFun-TS testing (Supplementary 
Table 1).

Clinical and imaging measurements related to postural 
sway and pronator drift
Each neurological examination performed by an MS-
trained clinician lasted approximately 30–60  min and 
was documented in the NeurEx™ app [16], which auto-
matically computes neurological disability scales and 
functional subdomains. Based on domain expertise, we 
selected NeurEx™ panel scores of neurological func-
tions that contribute to postural sway, including “Stance 
& Gait” (panel 16), “Cerebellar Dysfunction” (Lower 
extremities subdomain of panel 12), and “Propriocep-
tive Dysfunction” (Lower extremities subdomain of panel 
14). The square root of the sum of these scores computed 



Page 3 of 14Calcagni et al. BMC Neurology           (2025) 25:50  

the “NeurEx™ Postural Sway” subpanel. Similarly, for the 
Pronator Drift analysis we selected the pertinent subsys-
tem scores separately for each hand; we derived upper 
extremity “Motoric Dysfunction” (sums panel 8: mus-
cle strength, panel 10: reflexes and panel 7: spasticity), 
“Cerebellar Dysfunction” (panel 12 for a specific hand), 
and “Proprioceptive Dysfunction" (panel 14 for a spe-
cific hand). We summed these subsystem scores for both 
hands to compute “NeurEx™ Pronator Drift”.

Clinical grade MRI of the brain and upper cervical spi-
nal cord (i.e., axial and sagittal cuts extended to C5 level) 
was performed following procedures detailed in previous 
papers [18, 19]. We semi-quantitatively graded the extent 
of atrophy and number of focal lesions (“lesion load”) 
separately in the brainstem, cerebellum, and medulla/
upper cervical spinal cord using a previously published 
grading protocol; these measurements have proven to be 
important in determining physical disability [18, 19].

Data were collected by investigators blinded to other 
measurements, uploaded to the research database each 
week following patient visits, quality controlled dur-
ing weekly meetings, and locked from subsequent data 
modifications.

NeuFun‑TS tests description
NeuFun-TS tests were developed using Kotlin and Java 
within Android Studio. NeuFun-TS is distributed as an 
Android package and test results are uploaded to a pri-
vate database hosted on Google Firebase. Results are 
linked to an alphanumeric code to maintain privacy. The 
test operates on Android (Versions 11, 12) and displays 
graphics optimized for Google Pixel XL/2XL.

NeuFun-TS test subjects are provided with a Google 
Pixel smartphone that has an attached hand strap; they 
also receive an Auro Lounger Universal Adjustable 
Neck Mount (phone harness) to be used for the Postural 
Sway test. For each test in the app suite, when the user 
selects the test’s icon (i.e. “Postural Sway” icon), the app 
guides the user through trial completion via automated 
instructions.

A Postural Sway (Fig.  1A) “trial” is three 10-s upright 
balance tests, in which the user will stand as still as they 
can with their hands relaxed at their sides: first, standing 
with the eyes open and feet apart (EO-FA); second, stand-
ing with the eyes open and feet together (EO-FT); finally, 
standing with eyes closed and feet together (EC-FT).

A Pronator Drift (Fig.  1B) “trial” is two 10-s pronator 
drift tests (one per hand). The user will stand/sit as still as 
they can with their arms extended forward, palms facing 
upward, eyes closed, and one hand gripping the phone 
(strap optional).

A supervising lab member was present during Neu-
Fun-TS testing to answer any questions regarding testing 

procedure and to ensure subject safety. Each test col-
lects approximately 9.5  s of data using the Google Pixel 
built-in tri-axial accelerometer at a sampling frequency of 
50 Hz. Time-series were trimmed to 9-s for consistency 
among comparisons.

Computing digital biomarkers
Smartphone data was calibrated using an established 
protocol for accelerometer-based sway analyses in which 
each test’s 3-Dimensional time series were transformed 
into one Medio-Lateral (M-L) and one Antero-Posterior 
(A-P) time series [20]. Additionally, M-L and A-P time 
series were combined into a single radial acceleration 
time series, referred to as “Net” acceleration in down-
stream analyses.

Two time-related and two frequency-related measure-
ments of postural sway and pronator drift were com-
puted based upon review of previous analyses [9–11, 21] 
(Fig. 2).

Time-related measurements include the following:
1) Root Mean Square of acceleration (RMS), which 

measures acceleration magnitude. RMS was calculated 
from the M-L, A-P, and Net acceleration time series as

where  ai is instantaneous acceleration and N is the num-
ber of timepoints.

2) Sway jerkiness (Jerk) measures the rate of change 
in acceleration with respect to time. Jerk was calculated 
from the M-L and A-P acceleration time series as

where t is time and Acc is the M-L or A-P acceleration 
time series. Net Jerk was.

calculated using both M-L and A-P acceleration time 
series (AccML and AccAP, respectively) as

Next, acceleration data were discrete Fourier trans-
formed 21 to frequency power spectrums, which captures 
frequency (Hz) against Power Spectral Density (PSD). 
From the power spectrums we computed the first two 
spectral moments μ1 and μ2, respectively, as our fre-
quency-related measurements:

1. Spectral centroid (SC), which measures the “center of 
gravity” of the sway frequency (the central PSD-weighted 
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frequency) [21]. SC was calculated from each trans-
formed M-L, A-P, and Net time series as

where b1 and b2 are the band edges of the frequency sam-
ples, fk is the  kth sample frequency, and sk is the  kth spec-
tral density.

2. Spectral spread (SS), which measures the variability 
and dispersion of sway frequency. Following the same 
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notation, SS was calculated from each transformed M-L, 
A-P, and Net time series as

For Postural Sway, each measurement was computed 
for each stance (EO-FA, EO-FT, EC-FT); differences 
between testing conditions were evaluated by comput-
ing each measurement’s ratio for EC-FT:EO-FT (the 
Romberg Ratio; measures how removing visual stimulus 

SS = µ2 =

√

√

√

√

�
b2
k=b1

(fk − µ1)
2sk

�
b2
k=b1

sk

Fig. 1 NeuFun-TS Postural Sway and Pronator Drift user experience walkthrough. A Demonstration of the Postural Sway eyes closed and feet 
together test, with the smartphone mounted to the provided Auro Harness. B NeuFun-TS Postural Sway app experience. The NeuFun-TS allows 
users to practice tests, access help tutorials, visualize their history, and submit feedback regarding application bugs. The app currently contains 
fifteen different tests, which can be accessed in Practice Mode or Trial Mode (shown here). The Postural Sway interface provides both visual 
and auditory instructions to complete a trial. Upon receiving all instructions, the user may start the trial. The first Postural Sway test evaluates 
the user’s balance while standing with their feet comfortably apart and their eyes open. After the test is complete, the user’s test movements are 
plotted to a screen for user feedback, and the user will repeat with their feet together and eyes open and with their feet together and eyes closed. 
C Demonstration of a user performing the right-handed portion of the Pronator Drift test, using the attached phone strap. D NeuFun-TS Pronator 
Drift app overview. The Pronator Drift interface similarly provides visual and verbal guidance for trial completion. Upon receiving all instructions, 
the user may begin the test. The first Pronator Drift test evaluates the stability of the left hand. After the test is complete, the user’s test movements 
are plotted to a screen for user feedback. The user will repeat with the right hand
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affects sway) and EO-FT:EO-FA (measures how increas-
ing stance difficulty affects sway).

For Pronator Drift, Net measurements were com-
puted for each hand, which were later relabeled as 
dominant (“Dom.”) or non-dominant (“Ndom.") based 

on subject-identified hand-dominance. Because peo-
ple with severe disability were holding the phone in the 
most comfortable manner (strapped sideways or held 
vertically), we were unable to identify directional move-
ments. We also computed the sums and differences for 

Fig. 2 Visualization of measurements used in the Postural Sway and Pronator Drift analysis. A Manually generated example of 2-Dimensional 
acceleration data plotted over 0.6 s. Each test’s accelerometry data was converted to Antero-Posterior (“A-P”, front-to-back) and Medio-Lateral (“M-L”, 
left-to-right) acceleration data. B Display of the M-L component of the 2D acceleration data and provides a visualization of Jerk, which captures 
the rate of change of acceleration with respect to time, or “sway jerkiness”. C Display of the Antero-Posterior (A-P) component of the 2D acceleration 
data and a visualization of Root Mean Squared acceleration (RMS), which captures the magnitude of the sway over the course of a test. D Display 
of frequency-related measurements after transformation of acceleration data. Spectral Centroid captures the central Power Spectrum Density (PSD) 
of the Power Spectrum, while the Spectral Spread captures extent of deviation of the PSD’s distribution
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measurements across dominant and non-dominant 
hands (“Sum” and “Diff.”), respectively.

Altogether, the different permutations of the four meas-
urements yielded 60 Postural Sway digital biomarkers 
and 16 Pronator Drift digital biomarkers. All biomarkers 
were  log10 transformed to improve their distribution nor-
mality. Subjects with neurological exam data were ran-
domly split into a training set (80% of subjects) and an 
independent validation set (20%) before all data analyses.

Test–retest reliability and outlier removal
We evaluated inter-day test–retest reliability of derived 
digital biomarkers by computing the Intraclass Correla-
tion Coefficient (ICC) for subjects’ first two trials that 
were supervised in-clinic. We also gave subjects the 
option of taking a Google Pixel smartphone home to 
complete additional unsupervised testing; as a sensitivity 
analysis, we evaluated intra-test reliability across testing 
conditions by computing the ICC for subjects’ first in-
clinic trial and closest-by-date at-home test to evaluate 
NeuFun-TS reliability in real-world environments.

The ICC compares test–retest variance within subjects 
with the variance between subjects; high ICC indicates 
that a biomarker is stable over repeated measures. We 
computed the ICC (2,1) [22, 23], or the 2-way mixed-
effects model, which measures reliability of the first 2 
trials of each subject and treats trial number as a rater. 
Following published guidelines, we used an ICC of 0.5 
as a cutoff to remove features with poor test–retest reli-
ability [24]. To assure that downstream analyses are not 
affected by outliers, we identified outlier biomarker val-
ues as those above or below 1.5 times the interquartile 
range of reliable features.

Predictive model training and validation
Digitalized tests enable computation of large numbers 
of digital biomarkers, which can be aggregated into ML 
models that may outperform individual biomarkers in 
predicting outcomes. However, ML models can over-
fit, leading to unrealistically optimistic results. We per-
formed the following steps to mitigate model overfitting:

1) To limit the number of model features, we only 
included digital biomarkers with ICC > 0.5 and cor-
relations with at least one relevant clinical/imaging 
outcome.

2) To improve model interpretability, we used linear 
regression models. We selected 3 modeling strate-
gies that differ in level of collinearity stringency to 
account for redundancy among biomarkers: Ridge 
regression broadly applies moderate shrinkage to all 
colinear features (least aggressive); Lasso regression 
aggressively shrinks redundant features’ coefficients 

to zero (most aggressive); Elastic Net regression 
roughly mediates Ridge and Lasso in coefficient opti-
mization.

3) Using fivefold cross-validation, we optimized each 
model strategy’s hyperparameters (i.e., alpha, which 
is the hyperparameter for Lasso regression, must be 
increased or decreased to optimize how much the 
feature coefficients are penalized). Fivefold cross-
validation is a model-training strategy that randomly 
splits the training cohort into five equal parts called 
“folds”; four folds (80% of training data) are used to 
train the model and tune hyperparameters, while 
the remaining fold (20%) serves as a validation set to 
evaluate model performance. Each of the five folds 
serves as a validation fold once, yielding five optimi-
zation simulations.

4) For each model strategy, we computed a correspond-
ing component-based model through Principal Com-
ponent Analysis (PCA).

5) We selected the best model strategy for each out-
come by using the coefficient of determination  (R2).

6) We trained winning models on the complete train-
ing cohort and evaluated model performance on the 
independent validation cohort.

7) We compared model performance in the independ-
ent validation cohort with the best single predictor to 
validate that aggregating biomarkers provides added 
value over the best single digital biomarker.

We also combined digital biomarkers from both tests 
and performed steps 1–6 to evaluate how multiple tests 
model the global disability scales.

Results
Digital biomarkers demonstrate moderate inter‑day test 
reproducibility
As detailed in Materials and Methods, we removed bio-
markers with ICC below 0.5 as unreliable. From the 
Postural Sway test, 9 of 60 biomarkers presented mod-
erate reliability (Supplementary Fig.  1A). Only two bio-
markers, both measuring sway acceleration magnitude, 
achieved ICC > 0.5 for the two open eyes postural sway 
tests: A-P RMS, which captures acceleration magni-
tude in A-P directions, and “Net RMS”, which integrates 
acceleration magnitude from A-P and M-L directions. 
Surprisingly, for the most difficult test (eyes closed, feet 
together; EC-FT), in addition to RMS biomarkers, M-L 
Jerk and Net Jerk achieved ICC > 0.5. In fact, ICC for M-L 
RMS EC-FT was much higher (i.e., 0.695) than that of 
A-P RMS (i.e., 0.535–0.566 for all 3 stances). This sug-
gests that vision controls postural sway in M-L directions 
much more effectively than in A-P directions and elimi-
nating this visual correction increases test sensitivity. 
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For Pronator Drift (Supplementary Fig.  1B), 5 digital 
biomarkers achieved ICC > 0.5. Again, RMS exhibited 
stronger reproducibility than acceleration jerk, but only 
for the dominant hand.

As a sensitivity analysis, we evaluated if features 
deemed reliable in-clinic maintained reliability in unsu-
pervised, at-home environment by computing the ICC 
for the subjects’ first in-clinic trial and closest-by-date at-
home trial. For 10 Postural Sway subjects with at-home 
testing data (5 RR-MS, 2 SP-MS, 2 PP-MS, 1 HV), the 
A-P RMS EC-FT and Net RMS EC-FT yielded statisti-
cally significant, moderate reliability, aligning with in-
clinic reliability findings (Supplementary Fig. 2A). For 11 
Pronator Drift subjects (5 RR-MS, 4 SP-MS, 2 PP-MS), 
all three Jerk features, encompassing the dominant hand, 
non-dominant hand, and sum from both hands, yielded 
moderate to good reliability (Supplementary Fig. 2B).

Postural sway digital biomarkers correlate with age
Previous postural sway research has identified in healthy 
subjects a positive correlation between accelerometry-
derived measurements and age [25]. Some research has 
also indicated correlations are present between height, 
weight, and sex [26, 27]. For each diagnosis type with 
at least 10 subjects, we computed correlations between 
the reliable features and age, sex, height, and weight. 
Net RMS EC-FT demonstrated the strongest correla-
tion in HV, and was the only biomarker to correlate with 
age in all cohorts with 10 or more subjects (Fig. 3A). Net 
RMS EC-FT explained 67% and 57% of variance in HV 
and NIND cohorts, respectively (p < 0.001), with almost 
identical slopes and intercepts. This indicates that Net 
RMS EC-FT measures age-related increase in postural 
sway. Other postural sway biomarkers correlated with 
age and one pronator drift biomarker correlated with sex, 
although sex distribution was limited (Supplementary 
Fig. 3).

After subtracting the effect of natural aging (i.e., using 
Net RMS EC-FT HV age residuals), we observed that 
Net RMS EC-FT differentiates MS patients from HV and 
NIND controls (Fig. 3B). 17% of NIND subjects, 40% of 
RRMS, 54% of SPMS and 71% of PPMS patients meas-
ured Net RMS EC-FT beyond the effect of natural aging. 
Thus, Net RMS EC-FT also differentiates MS-related 
increase in postural sway from natural aging.

Postural sway digital biomarkers correlate more strongly 
with relevant clinical and imaging outcomes than pronator 
drift biomarkers
Next, we aimed to select the most clinically relevant 
digital biomarkers for modeling. Because biomarker-
derived models must be blindly tested in the independent 

validation cohort, we only used training cohort data for 
biomarker selection (Supplementary Tables 2, 3).

We computed Pearson correlations between reliable 
Postural Sway and Pronator Drift features and 3 global 
neurological disability scales (EDSS: ordinal, from 0–10; 
CombiWISE: ML-derived, continuous, from 0–100; Neu-
rEx™: derived from NeurEx™ App, continuous linear 
scale, theoretical maximum of 1347). Because postural 
sway and pronator drift tests measure subdomains of 
neurological examination, we also evaluated biomarker 
correlations with relevant subpanels, detailed in Mate-
rials in Methods, of the aforementioned global scales 
(Fig. 4). 

All postural sway digital biomarkers correlated moder-
ately strongly (r > 0.5, p < 0.001) with at least one clinical 
outcome. We observed a hierarchy in Pearson’s correla-
tions with global disability scales: correlations were weak-
est with EDSS (r = 0.39–0.57, p < 0.001), stronger with 
NeurEx (r = 0.42–0.63, p < 0.001) and strongest with 
CombiWISE (r = 0.46–0.65, p < 0.001). As expected, most 
digital biomarkers correlated comparatively stronger with 
subpanels of global disability scales, such as the stance 
and gait subpanel (r = 0.52–0.61, p < 0.001) or NeurEx™ 
Postural Sway (r = 0.48–0.64, p < 0.001). EC-FT biomark-
ers correlated stronger with the proprioception subpanel 
(r = 0.41–0.47, p < 0.001) than eyes open (EO-FA, EO-FT) 
biomarkers (r = 0.24–0.27, p < 0.05). This indicates that 
vision can largely compensate for the effect of decreased 
proprioception.

Additionally, all postural sway digital biomarkers cor-
related moderately with semi-quantitative imaging 
outcomes in the infratentorial compartment (Fig.  4A), 
although these correlations were slightly weaker 
(r = 0.34–0.58) compared to correlations with clini-
cal outcomes (r = 0.35–0.65). Generally, all 3 infraten-
torial sites (brainstem, cerebellum and medulla/upper 
cervical spine) contributed to these correlations. The 
infratentorial scores that integrate atrophy of all infraten-
torial anatomical regions correlated stronger with 
digital biomarkers than atrophy of each individual Cen-
tral  Nervous  System anatomical site (r = 0.34–0.58 vs 
r = 0.14–0.51). Likewise, scores that aggregated both 
lesion load and atrophy correlated stronger (r = 0.26–
0.58) compared to semiquantitative atrophy scores only 
(r = 0.14–0.56).

Net RMS EC-FT outperformed all digital biomarkers in 
correlations with clinical and imaging outcomes with the 
exception of correlations with cerebellar subpanels that 
correlated strongest with A-P RMS EO-FT stance, con-
sistent with clinical knowledge that vision does not com-
pensate for cerebellar dysfunction in postural sway.

Pronator Drift biomarkers exhibited comparatively 
weaker correlations overall. Within pronator drift 
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biomarkers, Jerk correlated weaker than RMS (r = −0.05 
to 0.29, p < 0.01 vs r = 0.11–0.43, p < 0.001). Surprisingly, 
biomarkers did not correlate with motoric and proprio-
ceptive subpanels but only with cerebellar subpanels (up 
to r = 0.43, p < 0.001). Because NeurEx™ Pronator Drift 
integrates motoric, proprioceptive and cerebellar dys-
function, the subpanel also did not correlate with any 

digital biomarker. The best biomarker from Pronator 
Drift was Net RMS Dom., which correlated with all global 
disability scales and demonstrated the same hierarchy 
we observed for postural sway biomarkers: EDSS < Neu-
rEx < CombiWISE (r = 0.40–0.43, p < 0.001). RMS Dom. 
also correlated with all imaging outcomes (r = 0.32–0.42, 
p < 0.001).

Fig. 3 Age exhibits differentiable relationship among cohorts’ sway amplitude measurements. A Net RMS EC-FT (Net sway amplitude for Eyes 
Closed and Feet Together) significantly correlated with age in every diagnosis cohort with at least 10 subjects (HV, NIND, and MS). Pearson’s (r) 
correlations and their p-values (p) were adjusted using the Benjamini–Hochberg False Discovery Rate adjustment with alpha = .05. B Age-adjusted 
Net RMS EC-FT prediction interval identifies abnormal digital biomarker results corresponding to MS-related disability. The 95% prediction interval 
was calculated from the Healthy Volunteer (HV) cohort and was used to identify abnormal Net RMS EC-FT in subjects with Multiple Sclerosis (MS), 
Non-Inflammatory Neurological Diseases (NIND), Relapsing–Remitting MS (RR-MS), Secondary-Progressive MS (SP-MS), and Primary-Progressive MS 
(PP-MS). The Wilcoxon Rank-Sum nonparametric test of difference was performed pairwise among all diagnostic groups using Benjamini Hochberg 
False Discovery Rate corrections (alpha = 0.05) to adjust p-values; * corresponds to significant differences with p-value <= 0.05, ** corresponds 
to p-value <= 0.01



Page 9 of 14Calcagni et al. BMC Neurology           (2025) 25:50  

Fig. 4 Digital biomarkers exhibit low to moderately strong Pearson correlations with clinical scores and MRI scores. A Postural Sway features 
exhibit significant, moderate Pearson correlations. B Pronator Drift features exhibit significant, low Pearson correlations with clinical scores and MRI 
scores. Correlation p-values were adjusted using the Benjamini–Hochberg False Discovery Rate adjustment with alpha = .05. RMS refers to root 
mean squared acceleration, which captures sway amplitude; Jerk refers to the rate of change of acceleration, which captures sway jerkiness. 
A-P refers to antero-posterior movement, which captures forward and backward sway; M-L refers to medio-lateral movement, which captures 
side-to-sway sway; Net combines M-L and A-P acceleration data to capture overall acceleration. “Dys.” is short for “Dysfunction”, “Fun.” is short for 
“Function”. Benjamini Hochberg False Discovery Rate corrections (alpha = 0.05) were used to adjust p-values; * corresponds to significant differences 
with p-value <= 0.05, ** corresponds to p-value <= 0.01
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Development and validation of digital biomarker models
We sought to predict 3 global scales of neurological dis-
ability (EDSS, CombiWISE, NeurEx™) and 2 test-specific 
scales (NeurEx™ Postural Sway, NeurEx™ Pronator Drift) 
using model strategies that accounted for multicollin-
earity among digital biomarkers (Supplementary Fig. 4). 
However, because pronator drift digital biomarkers did 
not correlate with NeurEx™ Pronator Drift, we instead 
used them to model NeurEx™ Cerebellar Dysfunction 
Dom., which these biomarkers correlated with (Fig. 4B), 
as a sensitivity analysis.

After optimizing model parameters and ensuring that 
models performed comparably to principal component 
models (Supplementary Figs.  5–7), we selected the best 
model type (Ridge, Lasso, or Elastic Net) using the coef-
ficient of determination  (R2). We trained these models on 
the complete training cohort (Supplementary Figs. 8–10) 
and tested them in the independent validation cohort 
(Fig. 5; Supplementary Figs. 11–12). Pearson’s correlation 
(r), the coefficient of determination, and the concordance 
correlation coefficient (CCC) were used as model perfor-
mance metrics.

First, we evaluated the ability of test-specific mod-
els (i.e., models derived from Postural Sway biomark-
ers) to predict test-specific outcomes (i.e., NeurEx™ 
Postural Sway); we compared these models with the 
best single predictors for each model outcome. Sur-
prisingly, for predicting NeurEx™ Postural Sway, we 
found that the best single predictor achieved greater 
model performance metrics than the best Postural Sway 
model (r = 0.70,  R2 = 0.46, CCC = 0.71 versus r = 0.64, 
 R2 = 0.32, CCC = 0.66, respectively; Fig.  5A). For Prona-
tor Drift modeling we found that the best Pronator Drift 
model outperformed the best single predictor in pre-
dicting cerebellar dysfunction in the validation cohort 
(r = 0.55,  R2 = 0.25, CCC = 0.33 versus r = 0.50,  R2 = 0.21, 
CCC = 0.31, respectively; Fig. 5B).

Next, we evaluated whether models that combine Pos-
tural Sway and Pronator Drift biomarkers outperform the 
best test-specific models in predicting global disability 
scales. Indeed, combined models achieved the highest 
performance metrics for EDSS, CombiWISE, and Neu-
rEx™ (r = 0.58–0.65,  R2 = 0.31–0.36, CCC = 0.58–0.66), 
indicating that accurately measuring global disability 
requires integrating biomarkers from multiple functional 
tests (Fig. 5C; Supplementary Figs. 11–12).

Discussion
Key findings
Analysis of the simple, 1-min NeuFun-TS Postural Sway 
test yielded a digital biomarker (Net RMS EC-FT) with 
moderately strong test–retest reproducibility – both 
across testing days in the clinic and testing supervised 

and unsupervised conditions – meaningful correlations 
with age (even in HV), and predictive power for disabil-
ity scores. This biomarker’s correlation with age aligns 
with previous studies that suggest age-related degen-
eration in proprioception and delayed motoric integra-
tion contributes to increased postural instability in older 
adults [28, 29]. Our findings further previous research 
by uncovering how healthy subjects and subjects with 
non-inflammatory neurological diseases exhibit a nearly 
identical progression of disability with age, while sub-
jects with progressive forms of MS (Secondary and Pri-
mary Progressive) followed steeper slopes. This identified 
MS-specific contributions to postural sway dysfunction. 
Notably, Net RMS EC-FT, which had the highest test–
retest reliability, outperformed postural sway models that 
incorporated some less reliable biomarkers; establishing 
reliability of digital biomarkers is essential to functional 
test analyses.

Moreover, while the NeuFun-TS Pronator Drift test 
also yielded moderately reliable digital biomarkers, the 
biomarkers correlated weaker with clinical outcomes. 
Nevertheless, these weaker biomarkers provided addi-
tional predictive value when we combined them with 
postural sway biomarkers to predict global scales of neu-
rological disability. This highlights the importance of 
having functional tests that cover different (ideally all) 
neurological subsystems in the NeuFun-TS in order to 
capture development of global neurological disability.

As a whole, the NeuFun-TS distinguishes itself from 
previous smartphone implementations of the neurologi-
cal examination. Its more comprehensive assessment of 
nervous system functionality, validation with an inde-
pendent and diverse patient cohort, and quantification 
of neurological disability with neurologist-derived clini-
cal scales are all unique, but necessary components to 
achieving a personalized, clinically-useful tool. Addition-
ally, our reliability testing, both within the clinic and with 
unsupervised settings, are critical steps to ensuring that 
lab findings translate to real-world conditions.

Future directions
While the goal of NeuFun-TS is measuring all neuro-
logical subsystems, the time required to perform all tests 
determines NeuFun-TS usability and, consequently, test-
ing compliance. Therefore, NeuFun-TS must balance test 
accuracy (may require longer testing times) and usabil-
ity (requires short testing). With this in mind, we will 
remove Pronator Drift from NeuFun-TS, because the 
test is only sensitive for cerebellar dysfunction, which is 
already measured with greater accuracy in another Neu-
Fun-TS test [17]. Likewise, Postural Sway EO-FA posi-
tion did not yield any non-redundant digital biomarkers. 
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Thus, we will explore whether abandoning this position 
and increasing time for EO-FT, which is sensitive to cer-
ebellar dysfunction, and EC-FT, which provides the best 
digital biomarker of Postural Sway, may enhance reliabil-
ity of these clinically meaningful biomarkers.

We will continue to validate the remaining NeuFun-TS 
tests. All validated NeuFun-TS tests are available to non-
commercial academic entities free of charge through the 
NIH licensing process. While we ultimately envision an 
application that enables remote neurological evaluation 

Fig. 5 Performance metrics of single best predictors and best models in independent validation cohort. Pearson’s (r) correlation, the coefficient 
of determination  (R2), and the concordance correlation coefficient (CCC) were used as metrics of model success. A The best single predictor 
for the NeurEx™ Postural Sway subpanel was Net RMS EC-FT, which achieves higher prediction and correlation coefficients than the best model 
assembled from all postural sway biomarkers. B The best model assembled from all pronator drift biomarkers outperformed the best single 
predictor for pronator drift Net RMS Dom. in predicting the NeurEx.™ Cerebellar Dysfunction subpanel for the dominant hand. C Combining 
biomarkers from the postural sway and pronator drift tests yields models that predict global scales of disability better than the postural sway 
or pronator drift test alone. RMS refers to root mean squared acceleration, which captures sway amplitude. Net combines Medio-Lateral 
and Antero-Posterior acceleration data to capture overall acceleration. “Dom.” is short for “Dominant hand”
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for the general public, the limited size and resources 
available to our research group prevents us from achiev-
ing storage of such large quantities of data and mainte-
nance of the smartphones’ compatibility with operating 
systems. However, by validating the effectiveness of the 
NeuFun-TS against the gold-standard of neurological 
examination and imaging outcomes, we effectively “de-
risk” such a project for commercial entities. Thus, the 
goal of the NeuFun-TS is proof-of-concept that optimiza-
tion and integration of digital neurological function tests 
can strongly approximate the neurological examination 
and reliably measure progression of neurological disabil-
ity. We believe the natural evolution in medicine will lead 
to phones or wearable devices with Apps that can reli-
ably measure neurological functions, both actively (such 
as NeuFun-TS) and passively (such as Apple Watch/
iPhone).

Potential limitations
One limitation of the postural sway test, as previously 
mentioned, was that the distance between the feet for the 
feet apart stance was not controlled between subjects; 
however, because this position did not provide useful bio-
markers we will be removing it from the NeuFun-TS. One 
potential limitation of the pronator drift test was that ori-
entation of the smartphone was not controlled, which 
prevented directional movements from being captured. 
However, signal interference from hand tremors and the 
inability of the digital biomarkers to discern pronation/
drift in most subjects means that accelerometers would 
likely fail to capture directional movements regardless. 
For both tests, the small cohort size for evaluating reli-
ability across supervised and unsupervised conditions 
likely contributed to the limited number of significant 
p-values among the previously identified clinically reli-
able features. Finally, some diagnostic groups (i.e. RIS) 
lacked sufficient numbers to perform statistical tests of 
group differences. However, the primary goal of NeuFun-
TS and this study is to quantify neurological dysfunction 
as disability exists on a spectrum, even in healthy indi-
viduals; therefore, the primary concern was recruiting an 
overall cohort representative of a wide range of neurolog-
ical disability, not balancing individual diagnostic groups.

Conclusion
The user-friendly, 1-min NeuFun-TS Postural Sway test 
exhibits meaningful correlations with age and clinician 
scores reflecting balance. Assembling models from differ-
ent NeuFun-TS tests yields models better able to predict 
clinical outcomes.
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A-P  Antero-posterior
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Supplementary Figure 1. The intraclass correlation coefficient (ICC) for 
test-retest reliability identified reliable features from the Postural Sway and 
Pronator Drift tests. A) 9 Postural Sway features (digital biomarkers) exhib-
ited moderate reliability (ICC at least .5), spanning all three testing condi-
tions. B) 5 Pronator Drift test features had moderate reliability from both 
dominant and non-dominant hands. All p-values were adjusted using the 
Benjamini-Hochberg False Discovery Adjustment with alpha = .05.

Supplementary Figure 2. The intraclass correlation coefficient (ICC) for 
intra-test reliability (in-clinic vs. at-home testing) identified reliable features 
from the Postural Sway and Pronator Drift tests. A) 2 of the 9 in-clinic 
reliable Postural Sway features (digital biomarkers) exhibited moderate 
reliability across testing conditions (ICC at least .5). B) 3 of the 5 in-clinic 
reliable Pronator Drift test features had moderate (ICC at least .5) to good 
(ICC at least .75) reliability.
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Supplementary Figure 3. Significant Pearson correlations between 
digital biomarkers and age and sex. A) Postural Sway biomarkers 
correlate with age in the healthy volunteer (HV) cohort. B) A Postural 
Sway biomarker correlates with age in the cohort of subjects with 
Non-Inflammatory Neurological Diseases (NIND). C) Postural Sway 
biomarkers correlate with age in the cohort of subjects with Multiple 
Sclerosis (MS); this cohort includes subjects with Relapsing-Remitting 
MS (RR-MS), Primary Progressive MS (PP-MS), and Secondary Progressive 
MS (SP-MS). D) A Pronator Drift biomarker correlates with sex in the HV 
cohort. * indicates p-value < .05, ** indicates p-value < .01, *** indicates 
p-value < .001. All p-values were adjusted using the Benjamini-Hoch-
berg False Discovery adjustment with alpha = .05.

Supplementary Figure 4. Pearson correlations among all analyzed 
model features (digital biomarkers) from both postural sway and 
pronator drift tests. * indicates p-value < .05, ** indicates p-value < 
.01, *** indicates p-value < .001. All p-values were adjusted using the 
Benjamini-Hochberg False Discovery adjustment with alpha = .05.

Supplementary Figure 5. Cross-validation results for models derived 
from Postural Sway digital biomarkers. Complete models (models 
composed of linear combinations of all biomarkers) demonstrated 
comparable results with principal component models (PCA). The model 
strategies and their corresponding parameters are listed on the x-axes; 
the coefficient of determination  (R2) is on the y-axis.

Supplementary Figure 6. Cross-validation results for models derived 
from Pronator Drift digital biomarkers. Complete models (models 
composed of linear combinations of all biomarkers) demonstrated 
comparable results with principal component models (PCA). The model 
strategies and their corresponding parameters are listed on the x-axes; 
the coefficient of determination  (R2) is on the y-axis.

Supplementary Figure 7. Cross-validation results for models derived 
from Postural Sway and Pronator Drift digital biomarkers. Complete 
models (models composed of linear combinations of all biomarkers) 
demonstrated comparable results with principal component models 
(PCA). The model strategies and their corresponding parameters are 
listed on the x-axes; the coefficient of determination  (R2) is on the 
y-axis.

Supplementary Figure 8. Coefficients for all winning models derived 
from Postural Sway digital biomarkers. The model outcome being 
predicted (i.e. EDSS) is listed above the model strategy (Ridge, Lasso, or 
Elastic-Net).

Supplementary Figure 9. Coefficients for all winning models derived 
from Pronator Drift digital biomarkers. The model outcome being 
predicted (i.e. EDSS) is listed above the model strategy (Ridge, Lasso, or 
Elastic-Net).

Supplementary Figure 10. Coefficients for all winning models derived 
from Postural Sway and Pronator Drift digital biomarkers. The model 
outcome being predicted (i.e. EDSS) is listed above the model strategy 
(Ridge, Lasso, or Elastic-Net). 

Supplementary Figure 11. Independent validation results for predictive 
models cohort compared to the best single predictor for each model 
outcome (EDSS, CombiWISE,  NeurExTM,  NeurExTM Postural Sway). 
using Postural Sway digital biomarkers. Pearson’s r, the coefficient of 
determination  (R2), and the concordance correlation coefficient (CCC) 
were used to evaluate models’ predictive strength for their respective 
outcomes.

Supplementary Figure 12. Independent validation results for predic-
tive models cohort compared to the best single predictor for each 
model outcome (EDSS, CombiWISE,  NeurExTM,  NeurExTM Cerebellar 
Dysfunction in the dominant hand [Dom.]). using Pronator Drift digital 
biomarkers. Pearson’s r, the coefficient of determination  (R2), and the 
concordance correlation coefficient (CCC) were used to evaluate mod-
els’ predictive strength for their respective outcomes.

Supplementary Figure 13. Pearson correlations for the randomly 
selected test cohort between clinical and imaging scores and A) Pos-
tural Sway digital biomarkers and B) Pronator Drift digital biomarkers. 

Correlation p-values were adjusted using the Benjamini-Hochberg False 
Discovery Rate adjustment with alpha = .05; * indicates a p-value <.05, 
** indicates p<.01, *** indicates p<.001. RMS refers to root mean squared 
acceleration, which captures sway amplitude; Jerk refers to the rate of 
change of acceleration, which captures sway jerkiness. A-P refers to 
antero-posterior movement, which captures forward and backward sway; 
M-L refers to medio-lateral movement, which captures side-to-sway sway; 
Net combines M-L and A-P acceleration data to capture overall accelera-
tion. “Dys.” is short for “Dysfunction”, “Fun.” is short for “Function”.  
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Supplementary Table 2.

Supplementary Table 3.
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