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Abstract 

Objective  To evaluate the potential of two large language models (LLMs), GPT-4 (OpenAI) and PaLM2 (Google), 
in automating migraine literature analysis by conducting sentiment analysis of migraine medications in clinical trial 
abstracts.

Background  Migraine affects over one billion individuals worldwide, significantly impacting their quality of life. 
A vast amount of scientific literature on novel migraine therapeutics continues to emerge, but an efficient method 
by which to perform ongoing analysis and integration of this information poses a challenge.

Methods  “Sentiment analysis” is a data science technique used to ascertain whether a text has positive, negative, 
or neutral emotional tone. Migraine medication names were extracted from lists of licensed biological products 
from the FDA, and relevant abstracts were identified using the MeSH term “migraine disorders” on PubMed and fil-
tered for clinical trials. Standardized prompts were provided to the APIs of both GPT-4 and PaLM2 to request an article 
sentiment as to the efficacy of each medication found in the abstract text. The resulting sentiment outputs were clas-
sified using both a binary and a distribution-based model to determine the efficacy of a given medication.

Results  In both the binary and distribution-based models, the most favorable migraine medications identified 
by GPT-4 and PaLM2 aligned with evidence-based guidelines for migraine treatment.

Conclusions  LLMs have potential as complementary tools in migraine literature analysis. Despite some inconsisten-
cies in output and methodological limitations, the results highlight the utility of LLMs in enhancing the efficiency 
of literature review through sentiment analysis.
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Background
Over one billion individuals worldwide suffer from 
migraine, with the disruptive and often debilitating 
symptoms considerably impacting their quality of life 
[1]. Despite the advent of novel treatments over the past 
decade, efficient analysis of this expanding body of sci-
entific literature remains a challenge [2]. However, large 
language models (LLMs) like OpenAI’s GPT family (pop-
ularly known by their interface ChatGPT) and Google’s 

*Correspondence:
Pengfei Zhang
phil.p.zhang@gmail.com
1 Department of Neurology, Rutgers Robert Wood Johnson Medical 
School, New Jersey, USA
2 Department of Neurology, Beth Israel Deaconess Medical Center, 
Boston, MA, USA
3 Harvard Medical School, Boston, MA, USA

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12883-025-04071-1&domain=pdf


Page 2 of 8Mackenzie et al. BMC Neurology           (2025) 25:69 

Gemini (formerly Bard), have the potential to revolution-
ize literature analysis by automating the synthesis and 
summary of research findings [3, 4]. Broadly speaking, 
LLMs are predictive models that generate human-like 
text in response to a prompt based on prior training on 
vast datasets of existing text. This gives them an unique 
ability to simulate the way a human might read, analyze, 
and interpret an article, possibly enabling insights into 
topics like migraine therapeutics, but much more rapidly 
and at larger scale [5–7].

Sentiment analysis, a computational process that dis-
cerns and quantifies the subjective tone of text, can offer 
valuable insights to scientific literature review by iden-
tifying predominant attitudes and perspectives about 
a topic [8]. This is done by identifying keywords and 
phrases that express positive or negative sentiment then 
quantifying the sentiment. For example, phrases like 
“successful” or “curative” would be associated with posi-
tive sentiment, while phrases “unsuccessful” or “harmful” 
may be associated with negative sentiment. With recent 
advances in computational power, machine learning tools 
can further enhance the efficiency of sentiment analysis 
by processing and analyzing vast amounts of text data 
at scale. Myszewski et al. successfully applied sentiment 
analysis to literature review using a novel sentiment clas-
sification model for clinical trial abstracts. Their model, 
built on adversarial learning and the BioBERT language 
processing model (an early example of an LLM trained on 
biomedical text), achieved a 91.3% accuracy in sentiment 
classification compared to assessments by expert human 
raters. [9] While GPT and Gemini are general purpose 
LLMs, they are several generations advanced and vastly 
more capable. This pilot study, employing both binary 
and distribution-based models, aims to assess the ability 
of two LLMs, specifically the GPT-4 model of GPT and 
the PaLM2 model of Gemini, to identify migraine medi-
cations with the most positive sentiment from PubMed 
clinical trial abstracts. Successful analysis could suggest 
broader applications of LLMs in highlighting promising 
therapies in headache medicine.

Methods
Comprehensive lists of pharmacologic and biologic med-
ications were extracted from the FDA’s “Orange Book” 
and “Purple Book,” respectively, including all brand and 
generic medication names [10, 11]. The two resultant 
lists were combined, duplicates were removed, and words 
were further screened through a publicly available data-
base of 466,550 English words [12]. Medication combi-
nations were considered separately from their individual 
counterparts (i.e., sumatriptan/naproxen was considered 
a separate compound from sumatriptan or naproxen 
alone).

To identify relevant article abstracts associated with 
clinical trials for migraine disorders, we conducted a 
PubMed search using the MeSH (Medical Subject Head-
ings) term “migraine disorders[mh].” MeSH search was 
utilized over keyword search due to its more structured 
and consistent approach to finding relevant literature. 
These results were then filtered to only include clinical 
trials. Once the PMIDs for these articles were identified, 
available article abstracts were downloaded using Pub-
Med’s application programming interface (API).

Binary, cumulative summation model
The text from each extracted abstract was entered into 
the corresponding APIs for both GPT and Gemini with 
the following prompt: Read the following abstract and 
identify all of the medications. For each medication, 
determine whether it is effective, ineffective, or neutral 
for the treatment of migraine. Assign a value of 1 for an 
effective medication, −1 for an ineffective medication, and 
0 for a neutral medication. Output the result in the for-
mat \"(drug, value)\". If no drug is found, output the word 
\"none\". Do not output any explanations. Here is the 
abstract:"

While this process was scripted and performed via the 
API, we have provided the equivalent process as screen-
shots as if it were done manually (Figs. 1 and 2).

Despite instructions in the prompt, as can be seen, 
the responses from these processes contained format-
ting variations. Therefore, outputs were parsed via 
custom-designed (non-AI/ML) code. Exceptions and 
nonconforming responses were identified by this code 
and manually corrected.

After parsing was completed, unique pharmacologi-
cal/biological agents listed in the database were iden-
tified and paired with the number of associated “1”s, 
“0”s, or “−1”s. A cumulative summation of scores (1, 0, 
−1) was obtained for each pharmacological/biological 
agent. Results were ranked from highest to lowest score. 
A mean score was also calculated to identify agents that 
may have had a bias towards high scores simply due to 
frequency of study. A final manual screening was con-
ducted to remove any remaining nonsensical words or 
non-drug related entries.

Distribution‑based (non‑binary) model
A higher score on the binary/cumulative model maybe 
influenced by the number of publications of a medica-
tion rather than its efficacy. To ameliorate this, we con-
structed a distribution-based model taking inspiration 
from Guo et  al.’s sentiment analysis model for social 
media platforms. Here, we aimed to measure the mean, 
median, and standard deviation of sentiment analy-
sis with output as a range from −1and 1 rather than 
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a binary positive/negative score [13]. The following 
prompt was provided to Gemini and GPT:

"Read the following abstract and identify all of 
the medications. For each medication, determine 
whether it is effective, ineffective, or neutral for the 
treatment of migraine. Assign a value between −1 
to 1 where 1 is for an effective medication, −1 for 
an ineffective medication, and 0 for a neutral med-
ication. Output the result in the format \"(drug, 
value)\" If no drug is found, output the word 
\"none\". Do not output any explanations. Here is 
the abstract:"

Like the binary approach, results were manually refined 
to correct for output errors. Recognizing that each medi-
cation’s average sentiment score could be skewed by the 
number of studies it appeared in, medications mentioned 
in only one study were excluded. Instead of a single 
cumulative score, we aimed to derive a sentiment distri-
bution for each medication based on the mean, median, 
standard deviation, and citation frequency. Analysis was 
prioritized by focusing on medications mentioned in 
the highest number of PubMed articles, selecting those 
with articles greater or equal to the median article count. 
This approach aimed to highlight the most extensively 
researched medications. These medications were then 
ranked by average sentiment score. Mean scores above 

Fig. 1  GPT screenshot (PMID: 2,632,052)
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0.5 represented medications that were both widely stud-
ied and positively regarded based on sentiment analysis.

Implementation
Custom Python code was written to download PMIDs as 
well as their corresponding abstracts. The Python Opti-
cal Character Recognition (OCR) library was used to 
convert the FDA Orange and Purple Book PDF format 
to text when required for extractions. GPT and Gemini 
APIs were accessed through Python libraries. Custom 
code written in the Haskell programming language was 
used to parse and clean our database in various stages of 
the project.

Results
Data identification and abstract acquisition for 2700 arti-
cles was completed on January 8, 2023. For the binary 
part of the project, Gemini API evaluation was completed 
on July 21, 2023 and GPT evaluations were completed on 
July 19th, 2023 and August 15th, 2023. Non-binary evalu-
ations were completed on Gemini and GPT APIs on Sep-
tember 29, 2023 and October 5th, 2023, respectively.

Binary results
After excluding nonsensical entries, the ten most favora-
ble pharmaceutical/biological agents as determined by 
Gemini were sumatriptan, topiramate, rizatriptan, almo-
triptan, erenumab, zolmitriptan, galcanezumab, fro-
vatriptan, fremanezumab, and lasmiditan (Table  1). For 
GPT, the ten most favorable pharmaceutical/biological 
agents were sumatriptan, topiramate, rizatriptan, zolmi-
triptan, erenumab, galcanezumab, almotriptan, meto-
clopramide, frovatriptan, and fremanezumab (Table  1). 
Of note, all of these medications, with the exception of 
metoclopramide, are FDA approved for migraine.

Distribution‑based results
In the Gemini dataset, a total of 71 drugs were identified 
after manual verification. The median number of articles 
for each medication was six, therefore medications with 
more than five PubMed articles were included (n = 41). 
Among this list, 33 medications contained mean sentiment 
scores greater than 0.5 (Table  2) The ten most favorable 
medications by mean score were fremanezumab, eptin-
ezumab, ubrogepant, rimegepant, zonisamide, erenumab, 

Fig. 2  Gemini results
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galcanezumab, bupivacaine, and levetiracetam. Of note, all 
of these medications, with the exception of bupivacaine, 
zonisamide, and levetiracetam are FDA approved for 
migraine.

Table 1  Binary results by summation of sentiment (1, 0, −1)

a Score results of 0.5 occurred due to the LLM not following directions to limit 
output to −1, 0, or 1

Medication Cumulative score Total articles Mean score

A: Gemini Rankings (Top 20)
  sumatriptan 169.5a 218 0.778

  topiramate 73 93 0.785

  rizatriptan 63.5a 68 0.934

  erenumab 47 48 0.979

  almotriptan 47 48 0.979

  zolmitriptan 46 51 0.902

  galcanezumab 44 45 0.978

  frovatriptan 31 32 0.969

  fremanezumab 31 31 1.000

  lasmiditan 29 30 0.967

  onabotulinum-
toxina

28 30 0.933

  eptinezumab 28 29 0.966

  sodium-valproate 21 25 0.840

  eletriptan 20 24 0.833

  naratriptan 16 19 0.842

  ubrogepant 15 15 1.000

  naproxen-sodium 15 15 1.000

  metoprolol 13 20 0.650

  prochlorperazine 12 13 0.923

  metoclopramide 12 22 0.545

B: GPT Rankings (Top 20)
  sumatriptan 224 300 0.747

  topiramate 84 115 0.730

  rizatriptan 78 84 0.929

  zolmitriptan 58 70 0.829

  erenumab 49 51 0.961

  galcanezumab 48 50 0.960

  almotriptan 47 51 0.922

  metoclopramide 38 66 0.576

  frovatriptan 35 35 1.000

  fremanezumab 32 32 1.000

  onabotulinum-
toxina

30 34 0.882

  eptinezumab 29 30 0.967

  sodium-valproate 28 33 0.848

  lasmiditan 28 29 0.966

  eletriptan 28 31 0.903

  prochlorperazine 20 22 0.909

  metoprolol 18 24 0.750

  naratriptan 17 19 0.895

  naproxen-sodium 17 20 0.850

  ubrogepant 13 15 0.867

Table 2  Distribution-based results by mean sentiment (1, 0, −1)

Medication Mean sentiment St.Dev Total articles

A: Gemini Rankings
  fremanezumab 1.000 0.000 30

  eptinezumab 1.000 0.000 29

  ubrogepant 1.000 0.000 15

  rimegepant 1.000 0.000 7

  zonisamide 1.000 0.000 6

  erenumab 0.964 0.161 49

  galcanezumab 0.957 0.206 46

  bupivacaine 0.929 0.267 14

  levetiracetam 0.929 0.189 7

  naproxensumatriptan 0.917 0.257 18

  fluoxetine 0.917 0.204 6

  timolol 0.917 0.204 6

  almotriptan 0.899 0.356 47

  divalproex 0.889 0.333 9

  lasmiditan 0.883 0.284 30

  venlafaxine 0.875 0.354 8

  diclofenac 0.867 0.297 15

  rizatriptan 0.857 0.343 77

  zolmitriptan 0.845 0.387 63

  atogepant 0.833 0.408 6

  prochlorperazine 0.826 0.355 16

  eletriptan 0.818 0.442 33

  onabotulinumtoxina 0.813 0.392 32

  naproxen 0.800 0.479 25

  frovatriptan 0.791 0.346 35

  topiramate 0.783 0.469 91

  sumatriptan 0.773 0.500 242

  metoprolol 0.747 0.406 20

  valproate 0.726 0.519 39

  naratriptan 0.723 0.513 22

  gabapentin 0.714 0.488 7

  ketoprofen 0.652 0.616 10

  metoclopramide 0.581 0.538 28

B: GPT Rankings
  fremanezumab 1.000 0.000 32

  naproxensumatriptan 1.000 0.000 21

  rimegepant 1.000 0.000 7

  atogepant 1.000 0.000 6

  galcanezumab 0.980 0.141 50

  eptinezumab 0.967 0.183 30

  erenumab 0.962 0.194 52

  frovatriptan 0.958 0.184 36

  lasmiditan 0.953 0.195 32

  diclofenac 0.944 0.236 18

  ubrogepant 0.938 0.250 16

  levetiracetam 0.929 0.189 7

  rizatriptan 0.919 0.307 93

  almotriptan 0.907 0.293 54
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For GPT, a total of 90 drugs were identified after man-
ual verification. Similarly to Gemini, the median number 
of articles for each medication was six, therefore medica-
tions with more than five PubMed articles were included 
(n = 46). Among this list, 38 medications contained mean 
sentiment scores greater than 0.5 (Table 2) The ten most 
favorable medications by mean score were freman-
ezumab, naproxen/sumatriptan, rimegepant, atogepant, 
galcanezumab, eptinezumab, erenumab, frovatriptan, 
and lasmiditan. Of note, all of these medications are FDA 
approved for migraine.

Post‑hoc analysis and manual scoring
As part of a post-hoc analysis, we manually scored a ran-
domly selected sample of 100 abstracts and compared it 
to both the GPT and Gemini results.

In the binary model for GPT, 61 abstracts matched 
manual scoring, 21 were scored differently, and 18 con-
tained non-significant variations (detailed later). In the 
binary model for Gemini, 53 abstracts matched manual 
scoring, 37 were scored differently, and 10 had non-sig-
nificant variations.

The non-significant mismatches were semantic in 
nature. For instance, algorithm output for PMID 12230594 

was (MIG-99", 1), ("Tanacetum parthenium", 1), ("fever-
few", 1) whereas the human scorer denoted the article as 
"feverfew, 1". Both are correct, since feverfew is known as 
MIG-99 commercially, and Tanacetum parthnium scientif-
ically. In PMID 19846269, the human scored (steroids, −1), 
whereas the algorithm was more precise in scoring ("dexa-
methasone", −1), ("prednisone", −1). Finally, a source of 
non-significant mismatch comes from inclusion of a non-
pharmacological intervention in the output rather than 
writing "none" as the prompt suggests.

In the distributive model, unlike in the binary model, 
any deviation beyond 0.1 was considered a significant 
mismatch. For example, for PMID 17988947, (topira-
mate, 1) versus (topiramate, 0.76) were considered sig-
nificantly different. For GPT, 58 abstracts matched 
manual scoring, 25 mismatched, and 17 resulted in non-
significant variations. For Gemini, 52 abstracts matched 
manual scoring, 37 mismatched, and 11 had non-signifi-
cant variations.

In summary, when considering a human as the gold 
standard, outputs differed significantly from GPT in 21% 
of articles using the binary method and 25% using the 
distributive method. Compared to Gemini, there was a 
difference of 37% using both the binary method as well as 
the distributive method.

Discussion
To our knowledge, our study is the first to investigate the 
application of large language models to literature search 
and migraine. Across binary and non-binary methods, 
medications receiving the most “positive” sentiment align 
with evidence-based choices for abortive and preventa-
tive migraine treatment as presented in the AHS Guide-
lines [14]. For example, triptans, topiramate, and CGRP 
monoclonal antibody treatments consistently ranked 
among the top ten medications chosen by both GPT and 
Gemini. These findings suggest the potential of large lan-
guage models as complementary tools in real-time iden-
tification of favorable migraine medications in primary 
literature analysis.

Discrepancies between binary and distribution-based 
models stem from their distinct methodologies. The 
binary model uses discrete scores (− 1, 0, 1), favoring 
simplicity but overemphasizing frequently studied medi-
cations. The distribution-based model uses a range of 
scores (− 1 to 1) summarized by mean and median, which 
mitigates the bias of publication frequency by emphasiz-
ing sentiment trends. For instance, sumatriptan’s lower 
mean scores may reflect its use as a comparator in newer 
drug studies. These differences highlight the need to 
select models aligned with specific research goals. Com-
bining both approaches could offer a more balanced sen-
timent analysis.

Table 2  (continued)

Medication Mean sentiment St.Dev Total articles

  eletriptan 0.889 0.398 36

  bupivacaine 0.875 0.342 16

  timolol 0.875 0.354 8

  venlafaxine 0.875 0.354 8

  zolmitriptan 0.867 0.373 79

  onabotulinumtoxina 0.857 0.430 35

  gabapentin 0.857 0.378 7

  valproic 0.857 0.378 7

  nadolol 0.833 0.408 6

  prochlorperazine 0.820 0.379 25

  metoprolol 0.813 0.385 24

  naproxen 0.809 0.390 34

  valproate 0.800 0.524 55

  naratriptan 0.761 0.601 23

  sumatriptan 0.758 0.556 325

  ketoprofen 0.750 0.577 16

  fluoxetine 0.750 0.463 8

  topiramate 0.737 0.576 118

  clopidogrellopid 0.714 0.488 7

  zonisamide 0.714 0.756 7

  ketorolac 0.700 0.414 15

  divalproex 0.643 0.745 14

  verapamil 0.583 0.669 12

  metoclopramide 0.528 0.573 71
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The study encountered several model-related and 
methodological limitations. First, both GPT and Gemini 
have well-documented drawbacks, including improper 
categorization of medications, production of falsified 
emerging migraine therapies, and inaccurate source 
citation [5, 15]. Further, despite providing explicit and 
uniform prompts, both LLMs displayed inconsistencies 
in adherence. For example, in the binary model, Gemi-
ni’s assignment of a 0.5 score for sumatriptan in PMID 
8783475 deviated significantly from our prompt. These 
inconsistencies required the development of custom 
code to parse the LLM outputs and manually correct 
formatting variations. There were also significant differ-
ences (between 21–37%) between human and machine 
scoring, though most articles were rated concordantly 
by both. Finally, while the top ten most positively rated 
medications by GPT and Gemini generally aligned 
with evidence-based guidelines, their outputs were not 
identical, reflecting the inconsistent intra- and inter-
platform reproducibility of LLMs. Further complicating 
the issue of consistency, the way LLMs generate output 
does not guarantee the same result with each execution, 
so a system may not agree with its own conclusion from 
a different run.

Future research should address the limitations identified 
in this pilot study. For example, while we could request 
rationales for sentiment scores, for this pilot study we 
have decided that such reliance on validation for each out-
come would undermine the purposed autonomy of LLM 
analysis. In future studies, however, it may be helpful to 
ask LLM to describe and justify its claim of effectiveness 
as an output. Furthermore, not all clinical trials are the 
same – multicenter trials have higher level of evidence 
than single center studies, and a potential future direction 
is to incorporate the level of evidence for clinical trials and 
adjust the sentiment scores accordingly. A more rigorous 
method is also needed to assess sentiment data from large 
language models at scale. Our initial summative method 
using scores from −1 to 1 might be overly simplistic, while 
our second approach excludes smaller datasets, poten-
tially leading to less reliable and biased evaluations of the 
current migraine medication landscape.

It is interesting to note that in the distributional model 
as well as per the mean score in the binary model, 
sumatriptan and topiramate, the two most evidence-
based and therefore most studied medications are not the 
ones with the highest sentiment. We hypothesize that this 
discordance has less to do with our model than with the 
nature of clinical trials where the question of “evidence 
based” (i.e. volume of articles) is pitted against the ques-
tion of “effectiveness/tolerability” (i.e. sentiment). Indeed, 
“evidence-based” does not need to be equivalent to 
“effective”—because sumatriptan and topiramate remain 

the most evidence-based medications for abortive/pre-
vention in migraine, they are used most frequently in 
comparison trials to establish efficacy for newer medica-
tions, often with the explicit intention of proving supe-
riority for the newer medication either in efficacy or 
tolerability. Since this sort of method is done at scale for 
the goal of proving superiority of newer drug over older 
more canonical drugs, it is inevitable that the older drug 
will have higher “volume” of articles, but some of those 
may cast them in an inferior light over newer drugs. In 
other words, while the volume of articles which contains 
these medications are high, newer classes of medications 
with fewer studies may have more skew towards positive 
sentiment.

Despite these limitations, the ability of both GPT and 
Gemini to consistently identify medications that align 
with established clinical guidelines underscores both the 
use case for sentiment analysis in medication research 
and the potential utility of LLMs to aid in primary litera-
ture review.

The clinical utility of sentiment analysis is derived 
from its ability to synthesize and prioritize findings 
from extensive medical literature. For clinicians, these 
results can serve as an initial filter to identify promising 
therapies warranting further investigation. For example, 
medications such as fremanezumab and galcanezumab, 
which consistently scored highly in our analysis, align 
with evidence-based guidelines for migraine treatment 
and may guide decision-making for patients requiring 
targeted therapies. For researchers, sentiment trends can 
help identify gaps in the literature or assess the broader 
reception of therapeutic innovations. Positive senti-
ment scores for medications, as observed in this study, 
may reflect their demonstrated efficacy and tolerability 
in clinical trials, but could also be influenced by publica-
tion bias or authors’ writing styles favoring newer treat-
ments. However, as sentiment analysis mimics the way 
in which humans might interpret a piece of text, with-
out conscious bias mitigation, a human reader may be 
influenced in the same manner. As such, while sentiment 
analysis does not replace traditional literature review 
methods, but its application offers a complementary tool 
for streamlining decision-making processes in both clin-
ical and research settings.

Overall, we believe that the continued refinement and 
integration of LLMs into clinical practice may play a 
promising supporting role in for healthcare professionals 
navigating and synthesizing vast amounts of literature. In 
turn, this could contribute to enhanced decision-making 
in medication management. As machine learning inevi-
tably advances, understanding its capabilities and appro-
priate applications may lead the way to breakthroughs in 
headache medicine research and beyond.
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Glossary
API	� Application Programming Interface
PMID	� PubMed Identifier
LLM	� Large language model
OCR	� Python Optical Character Recognition
GPT	� Generative Pre-trained Transformer
ICHD3	� International classification of headache disorders, 3rd edition
PaLM	� Pathways Language Model
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