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(SNPH) and idiopathic normal pressure hydrocephalus 
(INPH) [2]. Given the significant economic burden NPH 
imposes on patients and society, a comprehensive under-
standing of its pathogenesis is clinically crucial [3]. How-
ever, the underlying cause of NPH remains unclear for 
many patients [4]. In recent years, people have paid more 
and more attention to the relationship between immune 
inflammation and NPH.

B-cell activating factor (BAFF), a tumor necro-
sis factor(TNF) family member [5], is up-regulated in 
response to genetic alterations and viral infections, 
strongly associated with autoimmunity, and appears 
involved in neuroinflammatory processes [6]. BAFF-R, 

Introduction
Normal pressure hydrocephalus (NPH), characterized 
by ventricular enlargement and normal cerebrospinal 
fluid (CSF) pressure, presents with the clinical triad of 
gait disturbance, incontinence, and cognitive decline [1]. 
Depending on whether there is a clear cause, NPH can be 
divided into secondary normal pressure hydrocephalus 
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Abstract
Objectives Previous studies have suggested a possible link between normal pressure hydrocephalus (NPH) and 
immune factors, but the causal relationship between NPH and Baff-R expression on immune cells remains enigmatic. 
This study used a Mendelian randomization (MR) method to elucidate this association.

Methods The study used data from the Finngen genome-wide association study (GWAS) and included a large 
European cohort of 767 patients with NPH and 375,610 controls. Baff-R genetic results in 3,757 individuals of 
European ancestry had 22 Baff-R-related traits. Different MR techniques were used, and efficacy was assessed using 
heterogeneity and sensitivity analyses.

Results and conclusion Among the 22 traits, 8 Baff-R-related traits were causally related to NPH. The genetic 
prediction indicates that Baff-R, particularly in the area of BAFF − R on unswitched memory B cell, BAFF − R on 
IgD + CD38 − B cell, BAFF − R on CD24 + CD27 + B cell, BAFF − R on IgD − CD38 − B cell, BAFF − R on IgD + CD38dim B 
cell, BAFF − R on IgD + CD24 + B cell, BAFF − R on IgD + CD38 − naive B cell, BAFF − R on memory B cell may decrease 
risks on the development of NPH. These findings may help us to understand the immune mechanisms associated 
with NPH and help to develop future biomarkers related to the disease.
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one of three known receptors for BAFF [7], binds spe-
cifically to BAFF, controlling B cell survival [8]. Abnor-
mal BAFF-R expression can be observed in neurological 
diseases such as multiple sclerosis and Alzheimer’s dis-
ease [9, 10]. In addition, these neurological disorders 
often co-occur with NPH, prompting investigation of the 
link between BAFF-R and its pathogenesis. The patho-
physiology of NPH involves arachnoid fibrosis, patho-
logical angiogenesis, and neuroinflammation [11, 12]. 
Although immune-inflammatory molecules like TGF-β, 
TNF-α, IL-1β, and IL-6 are closely associated with these 
mechanisms, the relationship between BAFF-R and NPH 
remains unclear.

Traditional observational studies are prone to biases 
arising from confounding variables and reverse causal-
ity, which can undermine their overall credibility. In con-
trast, Mendelian randomization (MR), which leverages 
data from genome-wide association studies (GWAS), has 
become a powerful method for exploring causal relation-
ships. This study employs MR to investigate the genetic 
variants of BAFF-R on immune cells as instrumental 
variables (IVs), with the goal of determining the causal 
link between BAFF-R expression on immune cells and 
the development of NPH.

Material and method
In this study, a MR approach was employed to analyze 
the cause-and-effect relationship. The exposure variables 
consisted of BAFF-R expression on immune cells, while 
the IVs were single nucleotide polymorphisms (SNPs) 
strongly associated with BAFF-R on immune cells. The 
primary outcome of interest was NPH. To ensure the 
robustness of the results, heterogeneity and sensitivity 
analyses were conducted.

Data sources
The exposures and outcomes were obtained from pub-
licly available databases, and secondary analyses were 
conducted. Therefore, ethical approval was not required 
for this study, which focused on European populations 
for both the exposure and outcome samples.

We obtained GWAS data for BAFF-R on immune cells 
from the ieu open GWAS project website ( h t t p  s : /  / g w a  s .  
m r c  i e u  . a c .  u k  / d a t a s e t s) to explore the potential effects of 
BAFF-R on immune cells in NPH [13]. And GWAS data 
for NPH was obtained at the Finngen GWAS summary 
statistics website (https://r9.finngen.fi/). A group of 3,757 
Europeans were tested for the genetic variation in BAFF-
R on immune cells [14]. All data used in the analysis were 
collected by flow cytometry, and 22 BAFF-R-related fea-
tures were collected from this cohort. All 22 traits were 
median fluorescence intensity (MFI). The expression 
levels of the BAFF-R protein in different cell subgroups 
are indirectly reflected in the MFI group. Increasing the 

number of cells expressing BAFF-R or the level of BAFF-
R expression in specific cell subsets can enhance the 
intensity of BAFF-R fluorescence, even when the total 
cell count remains consistent. Supplementary Table S1 
presents the GWAS IDs, names, and trait type informa-
tion for BAFF-R-related traits. Furthermore, genetic data 
about NPH was acquired from the Finngen initiative for 
a substantial European sample set comprising 767 cases 
and 375,610 controls [15].

Selection of IVs
To function successfully as IVs, SNPs must fulfill three 
essential assumptions. Firstly, it is crucial to establish 
a strong correlation between SNPs and the exposure of 
interest. Additionally, it is necessary to set a minimum 
threshold of ≥ 10 for the strength of IVs as determined by 
F-values to mitigate potential bias in estimates of causal 
effects. Any value below this threshold may pose a sig-
nificant risk of introducing bias [16]. Afterward, the prin-
ciple of exclusiveness requires that IVs are not directly 
associated with the outcome. Their impact ought to be 
moderated only by exposure, guaranteeing the absence of 
genetic pleiotropy. Finally, independence: Independence 
means that IVs are not subject to confounders that influ-
ence both exposure and outcome [17]. MR simulates the 
random distribution process in the population by utiliz-
ing the random segregation and recombination of genetic 
variation during gamete formation. Notably, the integrity 
of the MR analysis is enhanced as the technique is usu-
ally not related to external environmental confounders 
[18–20].

The following parameters were implemented to ensure 
the authenticity and reliability of the causal relationship 
between BAFF-R on immune cells and NPH. First, we 
meticulously selected significant SNPs from the GWAS 
database of BAFF-R-associated traits. The power was set 
to F ≥ 10 (Supplementary Table S1), corresponding to the 
association significance level for “IVs” which is widely 
regarded as a robust screening threshold for IVs. Addi-
tionally, we applied a screening threshold of P < 5 × 10⁻⁶ 
to ensure an adequate number of SNPs. Second, the 
coefficient of linkage disequilibrium (LD) was set at r² 
= 0.001, with a maximum LD region span of 10,000 kb. 
Third, SNPs associated with BAFF-R were extracted from 
the NPH GWAS database. Finally, the data from the two 
relevant datasets were combined, and SNPs with palin-
dromic structures were excluded.

Statistical analyses
R software version R-4.3.1 conducted a statistical analy-
sis of all data. All estimates were considered significant at 
the level of ≤ 0.05. This study utilized multiple methodol-
ogies to deduce the potential causal impacts of BAFF-R-
related traits on NPH. The employed methods comprise 

https://gwas.mrcieu.ac.uk/datasets
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the MR-Egger, Inverse Variance Weighted (IVW), Simple 
Mode, Weighted Mode, and Wald Ratio approaches. For 
instances where three or more SNPs were present, the 
MR-Egger and IVW methods were utilized. SNP het-
erogeneity was assessed using Cochran’s Q test, deemed 

significant with a P-value of < 0.05. If no pleiotropy and 
heterogeneity were present, preference was granted to 
the outcomes obtained from the IVW method. To pre-
vent errors caused by multiple hypothesis testing, we 
used the False Discovery Rate (FDR) method created 
by Benjamini and Hochberg to regulate the p-value and 
manage the total error rate. In the MR analysis, we used 
the odds ratio (OR) to determine the link between out-
come and exposure. If OR = 1, it indicates that the expo-
sure has no impact on the outcome. If OR > 1, it implies 
that the exposure is linked to an increased likelihood of 
the outcome. On the other hand, if OR < 1, the exposure 
is associated with a decreased outcome probability.

The MR-Egger regression analysis was used to assess 
potential horizontal pleiotropy effects associated with 
the included SNPs. A significant deviation from zero in 
the intercept term of the MR-Egger method would sug-
gest the presence of horizontal pleiotropy. Additionally, 
we performed sensitivity analysis using the Leave-one-
out sensitivity test, where the results were reanalyzed 
by systematically excluding individual SNPs. The goal 
was to determine whether the exclusion of any single 
SNP caused a significant change in the findings. The reli-
ability of the MR results was considered validated if the 
exclusion of any SNP did not notably affect the overall 
outcomes.

Furthermore, the selected SNPs underwent a thorough 
cross-validation procedure utilizing the website:  h t t p  : / /  
w w w .  p h  e n o  s c a  n n e r  . m  e d s c h l . c a m . a c . u k / can to identify 
additional characteristics that could potentially impact 
the study outcomes. Any SNPs that showed correlations 
with these traits were subsequently removed, successfully 
reducing the likelihood of confounding factors influenc-
ing the results.

Results
Selection of IVs
After strict quality control, we finally found SNPs that 
were consistent with 22 BAFF-R-related traits and NPH 
GWAS. The SNP’s ID, P-value, β-value, effect allele 
(EA), other alleles and standard error (SE) were com-
prehensively merged for later analysis and presented in 
Supplementary Table S1. Finally, we found that only 8 
BAFF-R-related traits showed significant correlation with 
NPH (Supplementary Figure S1).

Exploration of the causation of Baff-R on immune cells on 
NPH
As demonstrated in Table  1, a significant correla-
tion suggests that eight traits related to BAFF-R are 
closely connected to the vulnerability of NPH, acting 
as protective measures against its onset. All 8 BAFF-R-
related trait types were MFI and B cell panels. MFI indi-
cates the degree to which BAFF-R is expressed within 

Table 1 The MR analysis results of BAFF-R related traits on NPH
Exposure Methods nSNPs OR (95%CI) P
BAFF-R on 
unswitched 
memory B cell

IVW 12 0.90 (0.82, 0.98) 0.021
MR Egger 12 0.89 (0.79, 1.01) 0.107
Weighted 
median

12 0.92 (0.82, 1.02) 0.111

Weighted mode 12 0.91 (0.82, 1.01) 0.095
Simple mode 12 0.83 (0.68, 0.99) 0.069

BAFF-R on 
IgD + CD38- B 
cell

IVW 13 0.90 (0.82, 0.98) 0.021
MR Egger 13 0.92 (0.81, 1.03) 0.189
Weighted 
median

13 0.91 (0.82, 1.02) 0.092

Weighted mode 13 0.91 (0.81, 1.01) 0.104
Simple mode 13 0.87 (0.70, 1.07) 0.214

BAFF-R on 
CD24 + CD27 + B 
cell

IVW 15 0.90 (0.82, 0.99) 0.024
MR Egger 15 0.89 (0.78, 1.01) 0.087
Weighted 
median

15 0.92 (0.82, 1.02) 0.116

Weighted mode 15 0.90 (0.81, 1.00) 0.079
Simple mode 15 0.84 (0.69, 1.02) 0.099

BAFF-R on IgD- 
CD38- B cell

IVW 11 0.90 (0.82, 0.99) 0.028
MR Egger 11 0.88 (0.78, 1.01) 0.093
Weighted 
median

11 0.92 (0.82, 1.03) 0.137

Weighted mode 11 0.91 (0.81, 1.02) 0.125
Simple mode 11 0.88 (0.74, 1.04) 0.160

BAFF-R on 
IgD + CD38dim 
B cell

IVW 17 0.91 (0.83, 0.99) 0.030
MR Egger 17 0.89 (0.79, 1.01) 0.085
Weighted 
median

17 0.91 (0.82, 1.02) 0.098

Weighted mode 17 0.91 (0.81, 1.01) 0.097
Simple mode 17 0.87 (0.71, 1.06) 0.192

BAFF-R on 
IgD + CD24 + B 
cell

IVW 12 0.90 (0.82, 0.99) 0.031
MR Egger 12 0.89 (0.78, 1.01) 0.095
Weighted 
median

12 0.92 (0.82, 1.03) 0.128

Weighted mode 12 0.90 (0.81, 1.00) 0.074
Simple mode 12 0.84 (0.70, 1.01) 0.095

BAFF-R on 
IgD + CD38- 
naive B cell

IVW 17 0.91 (0.84, 1.00) 0.039
MR Egger 17 0.97 (0.84, 1.11) 0.635
Weighted 
median

17 0.92 (0.82, 1.03) 0.139

Weighted mode 17 0.92 (0.82, 1.03) 0.160
Simple mode 17 0.77 (0.59, 1.00) 0.070

BAFF-R on 
memory B cell

IVW 13 0.91 (0.83, 1.00) 0.043
MR Egger 13 0.87 (0.77, 0.98) 0.045
Weighted 
median

13 0.92 (0.82, 1.02) 0.113

Weighted mode 13 0.90 (0.80, 1.00) 0.084
Simple mode 13 0.85 (0.71, 1.03) 0.123

http://www.phenoscanner.medschl.cam.ac.uk/
http://www.phenoscanner.medschl.cam.ac.uk/
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a specific cellular subset of B cells. After adjusting for 
FDR (P-FDR < 0.20), protective effects of eight traits 
related to BAFF-R were detected on NPH: BAFF − R on 
unswitched memory B cell, BAFF − R on IgD + CD38 − B 
cell, BAFF − R on CD24 + CD27 + B cell, BAFF − R on 
IgD − CD38 − B cell, BAFF − R on IgD + CD38dim B 
cell, BAFF − R on IgD + CD24 + B cell, BAFF − R on 
IgD + CD38 − naive B cell, BAFF − R on memory B cell 
(Figs.  1 and 2). In addition, the robustness of the nega-
tive correlation results between the eight traits associated 
with BAFF-R and NPH was ensured by MR-Egger inter-
cept and MR-PRESSO overall tests (Table 2). The scatter 
plots, funnel plots and leave-one-out plots (Figs. 3 and 4, 
Supplementary Figure S2) also indicated the stability of 
the results.

Exploration of the causation of NPH on Baff-R on immune 
cells
We conducted a reverse MR to examine if NPH causally 
affects Baff-R on immune cells. Nevertheless, we found 
no causative link between NPH and Baff-R on immune 
cells. Therefore, this is an indication that there is no 
reverse causal association between NPH and Baff-R on 
immune cells (Table 3).

Discussion
Using comprehensive publicly available genetic data, we 
explored causal associations between 22 Baff-R-related 
immune cell traits and NPH. The causal association 
between Baff-R-related immunophenotypes and NPH 
was investigated for the first time. The study deter-
mined that NPH had no causal effects on Baff-R-related 
immunophenotypes, and eight Baff-R-related immu-
nophenotypes showed a potential causal effect on NPH 
(FDR < 0.20) [21].

The three widely accepted pathophysiological mecha-
nisms of NPH are arachnoid fibrosis [22, 23], pathologi-
cal angiogenesis [24, 25], and neuroinflammation [11, 
26]. Baff is strongly associated with fibrosis, angiogenesis, 
and neuroinflammation. In our study, BAFF-R was nega-
tively correlated with NPH. Therefore, we hypothesize 
that BAFF and its receptor BAFF-R may be involved in all 
three primary mechanisms of NPH.

The involvement of BAFF in fibrosis, demonstrated in 
previous studies including liver fibrosis [27, 28], multiple 
sclerosis [29], and interstitial fibrosis [30], contradicts our 
finding where the level of BAFF-R expressed on immune 
cells was inversely correlated with the occurrence of 
NPH. Subarachnoid fibrosis is a crucial mechanism in 
forming NPH and may be related to the production of 
inflammatory factors in chronic inflammatory response. 
In NPH subarachnoid fibrosis, TGF-β emerges as a 
critical molecule. Previous studies have shown that the 
BAFF binding to BAFF-R decreases TGF-β levels [31]. 

Therefore, we hypothesize that BAFF specifically binds to 
BAFF-R, activating B cells, promoting Treg cell apopto-
sis, reducing TGF-β, inhibiting the TGF-β pathway, and 
thus inhibiting subarachnoid fibrosis.

The tumor necrosis factor (TNF) family is vital in the 
process of angiogenesis [32, 33]. BAFF, also a member 
of the TNF family, binds explicitly to BAFF-R, increas-
ing TNF-α levels, activating the NF-kb pathway, elevat-
ing angiogenic factors, and promoting angiogenesis [34]. 
Additionally, BAFF specifically binding to BAFF-R acti-
vates B cells to produce various cytokines, such as IFN-γ 
[35, 36]. IFN-γ acts to inhibit angiogenesis [37, 38]. Fur-
thermore, BAFF binding specifically to BAFF-R modu-
lates B and T cells, reducing TGF-β levels [31]. TGF-β 
negatively correlates with VEGFA expression through 
TGF-β signaling and can inhibit angiogenesis [39, 40]. 
The combined effect of these mechanisms may confirm 
our conclusion that BAFF-R levels are inversely related to 
NPH.

Neuroinflammation is one of the essential mecha-
nisms in the pathogenesis of NPH, mainly involving glial 
cell activation [41], the secretion of inflammatory cyto-
kines [42], and alterations to the blood-brain barrier [43]. 
When BAFF binds to BAFF-R, it can also promote neu-
ronal survival through the JAK-STAT signaling pathway 
activated by IFN-γ and IL-10 [44, 45]. This aligns pre-
cisely with the results of our study.

This research conducted a two-sample MR analysis of 
the largest published NPH GWAS cohort results. Con-
clusions are drawn based on genetic instrumental vari-
ables using various MR analysis methods. Nevertheless, 
our research has limitations. Firstly, the small sample 
size of the current NPH may lead to some false positives 
in our results. Secondly, additional stratified analysis of 
the population cannot be performed due to insufficient 
individual information. Thirdly, because the study used 
a European database and did not apply to other ethnic 
groups, the generalizability of our findings is limited. 
Fourthly, we used a less stringent threshold to evaluate 
the results. This may increase false-positive results but 
allows a more comprehensive evaluation of the robust 
correlation between BAFF-R-related immunophenotypes 
and NPH. Finally, although we have adopted a variety of 
methods to detect and adjust horizontal pleiotropy, we 
still need to pay attention to that certain tool variables 
may be affected by pleiotropy. Therefore, the stability of 
the result may still need to be further verified.

Conclusions
In conclusion, our comprehensive bidirectional MR anal-
ysis has shown the causal relationships between numer-
ous BAFF-R-related immunophenotypes and NPH. This 
has highlighted the intricate interaction patterns between 
these immunophenotypes and NPH, emphasizing their 
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Fig. 1 The forest plot of the causation of Baff-R on immune cells on NPH
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complexity. Moreover, our study has minimized the effect 
of inescapable confounding variables, reverse causation 
and other factors. This discovery could pave the way for 
researchers to investigate the biological mechanisms of 
NPH further, potentially resulting in earlier interventions 
and treatment. Our findings augment the existing immu-
nological evidence, offering essential insights into the 
prevention of NPH.

Table 2 The sensitivity analysis results of BAFF-R related traits on NPH
Exposure Outcome Het.p Ple.p MR.prosso
BAFF-R on unswitched memory B cell NPH 0.979 0.896 0.975
BAFF-R on IgD + CD38- B cell NPH 0.631 0.658 0.706
BAFF-R on CD24 + CD27 + B cell NPH 0.974 0.743 0.975
BAFF-R on IgD- CD38- B cell NPH 0.970 0.690 0.974
BAFF-R on IgD + CD38dim B cell NPH 0.834 0.693 0.867
BAFF-R on IgD + CD24 + B cell NPH 0.930 0.712 0.942
BAFF-R on IgD + CD38- naive B cell NPH 0.490 0.313 0.570
BAFF-R on memory B cell NPH 0.900 0.279 0.932

Fig. 2 The volcano plot of the causation of Baff-R on immune cells on NPH
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Fig. 4 The funnel plots for Baff-R on immune cells on NPH. (A) funnel plots for BAFF − R on unswitched memory B cell on NPH. (B) funnel plots for BAFF − R 
on IgD + CD38 − B cell on NPH. (C) funnel plots for BAFF − R on CD24 + CD27 + B cell on NPH. (D) funnel plots for BAFF − R on IgD − CD38 − B cell on NPH. 
(E) funnel plots for BAFF − R on IgD + CD38dim B cell on NPH. (F) funnel plots for BAFF − R on IgD + CD24 + B cell on NPH. (G) funnel plots for BAFF − R on 
IgD + CD38 − naive B cell on NPH. (H) funnel plots for BAFF − R on memory B cell on NPH

 

Fig. 3 The scatter plot of the causation of Baff-R on immune cells on NPH. (A) scatter plots for BAFF − R on unswitched memory B cell on NPH. (B) 
scatter plots for BAFF − R on IgD + CD38 − B cell on NPH. (C) scatter plots for BAFF − R on CD24 + CD27 + B cell on NPH. (D) scatter plots for BAFF − R on 
IgD − CD38 − B cell on NPH. (E) scatter plots for BAFF − R on IgD + CD38dim B cell on NPH. (F) scatter plots for BAFF − R on IgD + CD24 + B cell on NPH. (G) 
scatter plots for BAFF − R on IgD + CD38 − naive B cell on NPH. (H) scatter plots for BAFF − R on memory B cell on NPH
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