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Abstract
Background Traumatic brain injuries (TBIs) are characterized by myriad comorbidities that affect the functioning of 
the affected individuals. The comorbidities that TBI subjects experience span a wide range, ranging from psychiatric 
diseases to those that affect the various systems of the body. This is compounded by the fact that the problems that 
TBI subjects face could span over an extended period post-primary injury. Further, no drug exists to prevent the 
spread of secondary injuries after a primary impact.

Methods In this study, we employed graph theory to understand the patterns of comorbidities after mild TBIs. 
Disease comorbidity networks were constructed for old and young subjects with mild TBIs and a novel clustering 
algorithm was applied to understand the comorbidity patterns.

Results Upon application of network analysis and the clustering algorithm, we discovered interesting associations 
between comorbidities in young and old subjects with the condition. Specifically, bipolar disorder was seen as related 
to cardiovascular comorbidities, a pattern that was observed only in the young subjects. Similar associations between 
obsessive-compulsive disorder and rheumatoid arthritis were observed in young subjects. Psychiatric comorbidities 
exhibited differential associations with non-psychiatric comorbidities depending on the age of the cohort.

Conclusion The study results could have implications for effective surveillance and the management of 
comorbidities post mild TBIs.
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Background
Traumatic brain injuries (TBIs) are a significant public 
health concern affecting numerous countries across the 
globe [1–5]. TBIs are major contributors to fatalities and 
disabilities and exert a severe influence on the lives of the 
injured subjects and their family members [1–5]. Further, 
TBI survivors often have to deal with long-lasting com-
plications that could significantly impact their quality of 
life and daily functioning [2, 6–9]. The cost of diagnosing, 
treating TBIs, and managing post-traumatic complica-
tions in survivors of the condition could be enormously 
high, resulting in severe stress on the healthcare systems 
of the country [1–5]. Hence, a more significant focus 
and resources should be dedicated to enabling disease 
prevention.

TBI survivors often experience the development of a 
wide range of psychiatric and medical comorbidities that 
severely derail their work life and cognitive functioning 
[7–10]. These comorbidities are reported in TBIs of all 
severities, including mild, moderate, and severe forms of 
the injury [8, 10]. In a study of mild TBI (mTBI) subjects 
[8], the authors quantified the prevalence of psychiatric 
and medical comorbidities at five years post-injury and 
as a function of the biological sex and age of the sub-
jects. Mild TBI survivors are prone to developing highly 
diverse comorbidities ranging from cardiovascular, neu-
rologic, and respiratory to psychiatric [8, 11–14]. Similar 
results have also been reported after severe and moderate 
impacts to the brain [10].

The complications and comorbidities that TBI survi-
vors develop after an impact on the brain can be attrib-
uted to primary and secondary brain injuries [2, 15]. 
While primary injuries often happen immediately after 
an impact on the brain, the timescale of secondary brain 
injuries can vary from hours after the impact to days, 
months, and potentially years after the primary impact 
[2, 15, 16]. The primary injuries that damage local neu-
rons, glia, and blood vessels are often irreversible [2, 15, 
16]. On the other hand, the pathophysiological mecha-
nisms guiding the development and subsequent spread 
of secondary brain injuries could be halted by applying 
numerous therapeutic strategies [15–17]. Unfortunately, 
despite the concerted efforts by the TBI community in 
search of a potential therapeutic agent to prevent the cas-
cade of secondary brain injuries, no clinical trials have 
been successful so far in humans [18–22]. Even though 
numerous drugs have shown superior efficacy in prevent-
ing secondary injuries in animal models of TBIs, such an 
effect was not observed in human clinical trials [19, 20].

When successful treatment options don’t exist to treat 
the condition [18–20], the focus should be on the careful 
management of comorbidities for effective patient care 
[2, 23, 24]. However, continued surveillance of TBI sur-
vivors for all possible sets of comorbidities is impractical 

due to the associated costs and the wide range of comor-
bidities that TBI survivors often develop over a very long 
period following a primary impact [2, 7–10]. The hetero-
geneous nature of TBI injury types also complicates the 
situation [25, 26]. TBIs are considered very heteroge-
neous owing to several factors, and it is widely expected 
that heterogeneous injuries could give rise to diverse pat-
terns in the development of comorbidities over time [25, 
26]. Hence, a more practical and economical way to mon-
itor comorbidities in TBI subjects is required to avoid 
injury-associated complications [27].

In this study, we propose applying the principles of 
graph theory to decipher distinct patterns in the develop-
ment of comorbidities after mild TBIs [27]. We analysed 
mTBI subjects five years post-injury using the Traumatic 
Brain Injury Model Systems National Database (TBIMS) 
data [28]. By utilizing the data in the database [28], we 
constructed network graphs comprising comorbidities as 
nodes and edges representing the associations between 
them [27]. We decided to focus on mTBIs since the field 
is relatively under-explored, and the diagnosis of comor-
bidities post the condition goes largely unnoticed [29, 
30]. Upon application of various statistical measures and 
clustering techniques, we uncover unique patterns in the 
development of post-traumatic comorbidities separately 
in young and old subjects. Our study yields novel obser-
vations in the development of comorbidities post mTBIs 
that could effectively be utilized for disease prevention 
and management.

Methods
Our study employs a graph theory approach [27] to 
investigate patterns of disease co-occurrence follow-
ing mTBIs (5 years). We leveraged the Traumatic Brain 
Injury Model Systems (TBIMS) database  (   h t t p : / / w w w . t 
b i n d s c . o r g     ) [28], a comprehensive database of TBI sub-
jects encompassing vital information about the develop-
ment of comorbidities. Specifically, we included subjects 
with mTBIs as determined by the Glasgow Coma Scale 
(GCS) score (13 < = GCS < = 15) [2, 31]. We also restricted 
our analysis to subjects with five years of follow-up data 
to capture a sufficient time frame for potential disease 
co-occurrences to emerge. A request to access the data 
in the public version of the database [28] was placed in 
February 2023, and the access was granted subsequently.

The information regarding possible comorbidities 
(presence, absence, and onset) was collected through 
the National Health and Nutritional Examination Sur-
vey (NHANES) [32]. A total of 26 medical and psy-
chiatric comorbidities were included in our study, 
which were grouped under the following categories: 
psychiatric, musculoskeletal and rheumatologic, car-
diovascular, respiratory, neurologic, endocrine, gastro-
intestinal, and ophthalmologic group of comorbidities. 

http://www.tbindsc.org
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Under psychiatric comorbidities, the following comor-
bidities were included: Alcoholism, drug addiction 
(DA), depression, anxiety, obsessive-compulsive disor-
der (OCD), panic attacks (PA), bipolar disorder (BPD), 
attention deficit disorder/ attention deficit hyperactivity 
disorder (ADDADHD), and post-traumatic stress dis-
order (PTSD). The cardiovascular group of comorbidi-
ties had information regarding hypertension, congestive 
heart failure (CHF), stroke, myocardial infarction (MI), 
high blood cholesterol (HBC), and other heart condi-
tions (OHC). Sleep disorder (SD), dementia, and move-
ment disorder (MD) were included under the neurologic 
category. The musculoskeletal and rheumatologic groups 
include rheumatoid arthritis (RA), osteoarthritis (OA), 
and chronic pain (CP). Diabetes, cataracts, and liver dis-
ease (LD) were included under endocrine, ophthalmo-
logic, and gastrointestinal conditions, respectively.

After filtering the data from the TBIMS database 
[28], we constructed disease comorbidity networks for 
all subjects, young ( < = 50 years) and old (> 50 years). 
In the comorbidity network, the 26 diseases represent 
the nodes, and the edges represent their associations 

[33–36]. The strength of association between the nodes 
in the network was computed by estimating the phi-cor-
relation coefficient (φ) between each pair of comorbidi-
ties. A statistical test was then employed to eliminate the 
weaker connections and retain only those statistically 
significant at p < 0.01 [37]. The exact statistical procedure 
for constructing the disease comorbidity network [33], 
including the computation of the phi-correlation coeffi-
cient (φ), is explained in detail in Additional file 1: Sup-
plementary Methods.

Once the network was constructed, we computed vari-
ous centrality measures (degree, betweenness, eigenvec-
tor) from all three networks (all subjects, young and old) 
to identify the network’s vital nodes (comorbidities) that 
influence the flow of information [38–40]. The equations 
governing the computation of the centrality measures 
and an intuitive diagrammatic explanation (Additional 
file 1: Fig. S2-S4) of each are given in detail in Additional 
file 1: Supplementary Methods. Lastly, we employed a 
novel clustering algorithm called the ‘betweenness cen-
trality clustering algorithm’ to identify comorbidity clus-
ters that tend to co-occur in the three networks [41]. 
The algorithm identifies nodes with high betweenness 
centrality values and removes them iteratively from the 
network (Additional file 1: Fig. S5) until a specific thresh-
old is reached [41]. The algorithm then reinstates the link 
between the removed nodes (Additional file 1: Table S1) 
and the remaining connected components in the graph, 
forming localized clusters of comorbidities [41]. The 
algorithm is explained intuitively in Additional file 1: 
Supplementary Methods.

Results
We analysed the information in the TBIMS national data-
base [28] to construct a disease comorbidity network of 
mTBI subjects at 5 years post injury. The total number of 
mTBI subjects at 5 years post injury is 4915. Altogether, 
there was information regarding 26 comorbidities, as 
mentioned in the Methods section (Fig.  1), collected 
through the NHANES survey [28], the prevalence of 
which can be seen in a previous study [8].

As a first step, we computed the extent of co-associ-
ation between the 26 medical and psychiatric comor-
bidities. To do so, we calculated the phi-correlation 
coefficient (φ) between each pair of comorbidities [33, 
34] (Additional file 1: Fig. S1). After performing a sta-
tistical test (Additional file 1: Supplementary Methods), 
we eliminated weaker connections and retained only the 
statistically significant ones [37] (Fig.  1). The resulting 
comorbidities and their connections were represented 
in the form of a graph network where nodes represent 
the individual comorbidities (node size represents prev-
alence) and edges represent the strength of the asso-
ciations in the form of computed φ correlations (Fig. 2). 

Fig. 1 Schematic workflow of the analysis of disease comorbidity net-
works in mTBI subjects. Flow chart represents various steps in the con-
struction of disease comorbidity network and subsequent clustering 
based on betweenness centrality
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Thicker edges represent stronger connections between 
comorbidities (Fig.  2). For example, depression exhibits 
a stronger association with anxiety (φ = 0.48), one of the 
strongest associations between all sets of comorbidities 
in the network. On the other hand, chronic pain exhib-
its a somewhat weaker yet statistically significant con-
nection with anxiety (φ = 0.21). Any isolated comorbidity 
(stroke) with no connection to other parts of the network 
was not included (Fig. 2).

To understand the statistical properties of the network 
and identify vital nodes (comorbidities), we computed 
various centrality measures [33, 38, 39]. Three vital cen-
trality measures were considered: betweenness centrality, 
degree centrality, and eigenvector centrality [39] (Addi-
tional file 1: Supplementary Methods). All centrality 
measures identify vital nodes that control information 
flow and transition patterns in the disease comorbid-
ity network [33]. The distribution of the three centrality 
measures of the network can be seen in Fig. 3. From the 
figure, it can be seen that the three centrality distribu-
tions differ from each other, although a high correlation 
can be seen between degree vs. eigenvector centrali-
ties (r = 0.93). Since betweenness centrality exhibited the 
most minor correlation with prevalence (r = 0.028), we 
investigated the network further using this metric.

Next, we decided to study the network at a more granu-
lar level by identifying localized clusters of comorbidities 
after eliminating connections between vital comorbid-
ity hubs. To do so, we incorporated an algorithm based 
on betweenness centrality previously implemented in a 
study of disease comorbidities [41]. This approach aims 
to identify comorbidities that occur in close association 
with each other, which would further help understand 
their shared physiological mechanisms.

Comorbidity clusters in mTBI subjects
We identified six clusters (Fig. 4) after applying the clus-
tering method based on betweenness centrality [41]. 
The six clusters differed concerning the constituent 
nodes and connectivity between them. The first cluster 
(Fig.  4) includes psychiatric conditions and their con-
nections. The psychiatric conditions found in cluster 1 
include PTSD, BPD, ADDADHD, PA, DA, alcoholism, 
anxiety, and depression (Fig.  4). In addition to observ-
ing connections among psychiatric conditions, cluster 1 
also encompasses connections between non-psychiatric 
and psychiatric conditions (Fig.  4). The non-psychiat-
ric conditions seen in cluster 1 include LD, RA, CP, SD, 
and emphysema. Mainly, emphysema is associated with 
depression, alcoholism, and DA. One salient point is that 

Fig. 2 Disease comorbidity network of all mTBI subjects at 5 years post injury. The nodes in the network represent the comorbidities, while the edges 
represent associations in the form of phi-correlation coefficient. Node size indicates prevalence, and edge thickness represents the strength of the 
association
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OCD is not associated with other psychiatric conditions 
in the network (except ADDADHD in cluster 3). Alto-
gether, the first cluster seems to reinforce the fact that 
psychiatric conditions exhibit a high degree of comorbid-
ity [6–8].

In the second cluster (Fig. 4), diabetes and cataracts are 
associated with each other and other cardiovascular con-
ditions. Diabetes is comorbid with HBC, and cataracts 
with OHC. In addition, cataracts, an ophthalmologic 
condition, is associated with LD. The third cluster (Fig. 4) 
consists of three constituents: OCD, ADDADHD, and 
RA. OCD, a psychiatric condition, is associated with both 
RA and ADDADHD. In the fourth cluster, one can wit-
ness the association between cardiovascular comorbidi-
ties and other groups of comorbidities. Cardiovascular 
comorbidities (CHF, OHC) in the cluster are associated 
with pulmonary comorbidities (pneumonia and emphy-
sema). CHF is, in particular, comorbid with HBC, OHC, 
MI, LD, BPD, pneumonia, and emphysema. Lastly, BPD 
is associated with cardiovascular conditions CHF and 
MI.

In cluster 5 (Fig.  4), one can see the association 
between neurologic and cardiovascular conditions. In 
particular, dementia is associated with hypertension, and 
MD is linked with OHC. Cluster 5 (Fig. 4) also witnesses 
the association between MD and dementia, RA and HBC 
with hypertension. Lastly, an association between OA 
and HBC can be seen in cluster 6. In the next section, we 
will discuss which associations are seen in young and old 
mTBI subjects.

Comorbidity clusters in old and young mTBI subjects
As a next step in the study, we examined which comor-
bidity patterns are observed in old and young subjects. 
Subjects were categorized as old if their age was greater 
than 50 years at follow-up (or young otherwise). Simi-
lar to the analysis involving all mTBI subjects, we com-
puted the φ for all pairs of 26 comorbidities of mTBI 
subjects (> 50 years of age) (Fig.  1). After retaining the 
statistically significant associations [37], we displayed 
the information as a network graph (Fig.  5) for old 
mTBI subjects. Note that stroke, MI, OA, and hyperten-
sion were excluded since they are not connected to the 

Fig. 3 Distribution of three centrality measures constructed from the comorbidity network of all mTBI subjects. Panel A represents the distribution of 
betweenness centrality, panel B represents degree centrality, and panel C represent eigenvector centrality
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leading network. With this network in place (Fig. 5), we 
applied the betweenness centrality clustering algorithm 
[41] to identify localized clusters of comorbidities in the 
network.

First, we found that psychiatric conditions have a high 
degree of co-occurrence among each other, similar to the 
results observed in the previous section (Fig. 6). This can 
be seen from cluster 1 (Fig.  6), where depression, anxi-
ety, PTSD, DA, alcoholism, PA, and BPD tend to be co-
associated with each other. In addition to co-occurrence 
within the group, psychiatric comorbidities are also asso-
ciated with other somatic conditions. For example, CP is 
seen to be associated with DA, PA, and PTSD (cluster 1), 
while RA is associated with DA (cluster 1) and emphy-
sema with depression (cluster 2, Fig.  6). One can also 
witness co-association between CHF and pulmonary 
comorbidities (pneumonia and emphysema) in cluster 
2 (Fig.  6). Cluster 3 showcases the connection between 
dementia and MD, typically occurring as people age. 
Cluster 5 encompasses connections between OCD with 
diabetes and SD, while Cluster 4 depicts the link between 
diabetes and HBC (Fig. 6). Lastly, one can see that LD is 
associated with cataracts and diabetes in cluster 6. The 
list of removed nodes as a result of applying the cluster-
ing algorithm can be seen in the Additional file 1: Table 
S1.

Next, we performed the same analysis for young mTBI 
subjects. After constructing the disease comorbidity net-
work for this study group (Fig.  7), we formed localized 
clusters by applying the clustering algorithm based on 
betweenness centrality as before. This resulted in seven 
clusters, as shown in Fig. 8. Similar to the trends seen in 
older subjects, psychiatric comorbidities tend to co-occur 
(Fig. 8). This can be seen across cluster 1 and in clusters 
2 and 4, where anxiety (cluster 2) and PTSD (cluster 4) 
were connected to other psychiatric conditions, respec-
tively (Fig. 8). Psychiatric comorbidities were also associ-
ated with other somatic diseases like emphysema (cluster 
1), LD (clusters 2 and 4), and stroke (cluster 4) (Fig.  8). 
We also observed a close association between BPD and 
cardiovascular comorbidities (cluster 3, MI, CHF, HBC). 
Cluster 5 (Fig.  8) encompasses associations between 
OCD with RA and ADDADHD. Lastly, we observed 
that SD is associated with cardiovascular comorbidities 
(OHC, stroke) and CP (cluster 6).

Next, we identified prominent comorbidity patterns 
in the network clusters of all subjects (Figs. 2 and 4). We 
examined whether they were observed in the network of 
young and old subjects (Figs. 6 and 8, respectively). The 
features are listed in Table 1, along with the information 
on whether they are observed in young vs. old cohorts. 
The analysis revealed some striking similarities and 

Fig. 4 Application of betweenness centrality-based clustering to the comorbidity network of all mTBI subjects. Individual clusters encompass nodes and 
edges that represent the comorbidity and the association between them, respectively
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dissimilarities regarding the co-occurrence of comor-
bidities between the two cohorts (Table 1). Both cohorts 
were characterized by solid co-occurrences of psychiatric 
comorbidities. However, the co-occurrence of psychiatric 
comorbidities with LD was seen only in the young cohort. 
Similarly, the co-occurrence of psychiatric comorbidities 
with CP was witnessed only in the old cohort (Table 1). 
One remarkable feature of the disease comorbidity pat-
tern in the young cohort is that OCD tends to co-occur 
with ADDADHD and RA (Table 1). In comparison, this 
association was not present in the old cohort. Cardiovas-
cular comorbidities were associated with other groups of 
comorbidities in both young and old cohorts, but some 
differences were also noticed. The association of cardio-
vascular comorbidities with BPD was seen only in the 
young cohort (Table 1). The implications of these relative 
associations in young vs. old cohorts are explained in the 
discussion section.

Discussion
In this study, we adopted a novel approach of employ-
ing graph theoretical principles [27, 33, 42] to identify 
comorbidity patterns in mTBI subjects. We analyzed the 
data about mTBI subjects from the TBIMS national data-
base [28] five years after the injury. We aim to identify 
prominent disease associations leading to an enhanced 

understanding of disease progression in young and old 
mTBI subjects. Our network analysis of comorbidities 
post mTBI has yielded interesting associations between 
disease comorbidities in young and old cohorts that 
could eventually contribute to effective disease manage-
ment and prevention.

Metrics for capturing vital comorbidities in a disease 
network
Prevalence is an important metric that identifies vital 
comorbidities in a population and is widely quantified in 
numerous epidemiological studies [8, 10]. Our previous 
study [8] computed the prevalence of various comorbidi-
ties after mTBIs. Metric(s) constructed based on graph 
networks could offer valuable information regarding 
the presence of comorbidities that play an essential role 
in disease transitions. Such metrics could also exhibit 
decreased correlation with prevalence, highlighting 
the additional information they provide regarding all 
comorbidities in the population. As mentioned in the 
results section, betweenness centrality (Fig. 3) exhibits a 
low correlation with prevalence. For example, BPD and 
emphysema exhibit low prevalence [8] after mTBIs but 
are characterized by high values of betweenness cen-
trality (Fig.  3). On the other hand, CP and anxiety are 
highly prevalent after mTBI [8] but exhibit low values 

Fig. 5 Disease comorbidity network of old mTBI subjects at 5 years post injury. The nodes in the network represent the comorbidities, while the edges 
represent associations in the form of phi-correlation coefficient. Node size indicates prevalence, and edge thickness represents the strength of the 
association
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of betweenness centrality (Fig.  3). This could mean that 
despite exhibiting a low prevalence rate, a specific comor-
bidity could play a vital role in controlling disease transi-
tions by being associated either directly or indirectly with 
other comorbidities in the network.

Comorbidity associations and shared biological and 
lifestyle factors mediating the relationship
Our results indicate that psychiatric comorbidities tend 
to co-occur after mTBI incident(s) (Figs. 4 and 6, and 8), 
in line with the fact that such illnesses occur at a higher 
rate in TBI subjects compared to the general public [6–8, 
11]. Our study also suggests that OCD is significantly 
associated with RA in young subjects (Fig.  8). While 
OCD is a psychiatric condition [43], RA is considered to 
be a rheumatological and an autoimmune condition [8, 
10]. Endorsing our observations, previous literature sug-
gests that OCD may encompass an inflammatory origin 

[43, 44]. In a nationwide study of Swedish individuals 
[44], OCD was associated with numerous autoimmune 
conditions. Although individuals in this study exhibited 
increased odds of acquiring RA after OCD, the differ-
ences were not statistically significant [44]. Additionally, 
OCD is known to be associated with elevated levels 
of inflammatory markers such as interleukin [45] and 
TNF-α [46]. Therefore, our results are indicative of other 
studies in the literature that inflammation may contrib-
ute significantly to the pathogenesis of OCD [43]. OCD 
was also associated with ADDADHD (Fig. 8), and reports 
suggest that both conditions exhibit a high degree of 
association and might involve abnormalities in similar 
brain networks [47].

One other association worth mentioning is the link 
between BPD and cardiovascular diseases (CHF, MI, 
HBC). BPD in the study exhibited comorbidity with 
cardiovascular conditions (Fig. 4) and more so in young 

Fig. 6 Application of betweenness centrality-based clustering to the comorbidity network of old mTBI subjects. Individual clusters encompass nodes 
and edges that represent the comorbidity and the association between them, respectively
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subjects (Fig. 8). Previous results in the field have corrob-
orated our findings [48, 49]. In a recent study that quanti-
fied long-term cardiovascular disease risk in patients at 
a primary care centre, subjects with BPD (severe mental 
illness) exhibited an increased risk [49]. Similar results 
were also observed in a prospective cohort study involv-
ing Korean subjects [48] where young subjects with BPD 
exhibited an elevated risk for MI. Although poor lifestyle 
behaviours (BMI, smoking) are postulated as a possible 
link between BPD and cardiovascular disease risk [49], 
such a relationship was not observed in the study of the 
Korean nationwide cohort [48]. Lastly, BPD in young 
adults could lead to the early development of certain car-
diovascular conditions according to the scientific state-
ment from American Heart Association [50].

The co-occurrence of emphysema with psychiatric con-
ditions is another notable observation (Figs. 4 and 6, and 
8). In the study, emphysema was associated with depres-
sion in both young and old subjects with mTBI history 
(Figs. 4 and 6, and 8). Prior literature suggests psychiat-
ric comorbidities (anxiety and depression) are common 
in subjects with chronic obstructive pulmonary disease 
(COPD) [51]. Possible risk factors for developing psy-
chiatric conditions after COPD include loneliness due 
to illness severity, dyspnoea and poor physical health 

[51]. COPD subjects with psychiatric conditions are also 
known to exhibit poor prognosis [51].

Similar to other reports in the literature [52], we 
observed that pneumonia is comorbid with COPD (old 
subjects) (Figs.  4 and 6). Subjects with COPD are at an 
increased risk of developing pneumonia due to a variety 
of reasons, including bronchitis, excessive mucus accu-
mulation to name a few [52]. CHF also tends to co-occur 
with pneumonia in our study (Figs.  4 and 6), similar to 
a previous study [53], which reported that patients with 
CHF exhibit an increased risk of developing a multitude 
of comorbidities, including pneumonia, which worsens 
with age.

We also observed an increased predisposition of psy-
chiatric comorbidities with LD in our study. Among the 
psychiatric comorbidities, anxiety and PTSD were associ-
ated with LD, an observation seen only in young mTBI 
subjects (Figs.  4 and 8). Individuals with LD exhibit an 
increased risk of developing psychiatric conditions and 
mood disorders, and possible risk factors include tired-
ness and changes in recreational lifestyle post-diagnosis 
[54, 55]. Interestingly, PTSD in the veteran population 
is accompanied by the occurrence of liver cirrhosis, and 
those veterans with both conditions exhibit dysbiosis of 
the gut microbiota compared to those without PTSD, 
indicating the role of the gut-brain axis on the association 

Fig. 7 Disease comorbidity network of young mTBI subjects at 5 years post injury. The nodes in the network represent the comorbidities, while the 
edges represent associations in the form of phi-correlation coefficient. Node size indicates prevalence, and edge thickness represents the strength of the 
association
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[56]. Also, liver problems are one of the reasons for 
increased mortality among veterans with PTSD [57].

Our study has also highlighted potential links between 
diseases that typically tend to occur in the elderly pop-
ulation. One such example is the link between LD and 
cataracts in old subjects (Figs. 4 and 6), also documented 
in a recent survey involving subjects from the UK bio-
bank [58]. It is assumed that the metabolic modifications 
caused by the liver condition could eventually lead to the 
genesis of cataracts [58]. Another comorbidity associa-
tion that occurs as people age is the connection between 
MD and dementia (Figs. 4 and 6) [59]. Finally, our study 
reinforced recent results in the field that cholesterol 
could be a risk factor for the pathogenesis of OA (Fig. 4) 
[60], a commonly observed rheumatological condition 
indicating that OA could exhibit a metabolic origin [61].

Implications for clinical research and practice
Our study results have profound implications for clini-
cal practice and research, especially concerning treating 
and managing comorbidities after mild brain trauma. 
First, the associations reported in the study could lead 
to the development of early intervention plans for sub-
jects affected by the condition. For example, we observed 
strong associations between BPD and cardiovascular 
conditions in young subjects. Such observations could 

motivate early monitoring (screening and health checks) 
of cardiovascular conditions in subjects with BPD and 
improve health outcomes in young adults. Additionally, 
timely administration of preventive medications and 
drugs (anti-hypertensive drugs) could lower the burden 
of cardiovascular diseases in subjects with BPD. Fur-
ther, since one comorbidity could worsen the progres-
sion of the other and potentially lead to acquiring other 
pathologies, intervention programs could be designed to 
reduce mortality, restore functionality, and improve over-
all patient outcomes. For example, in subjects with PTSD 
and liver disease [56], intervention programs could aim 
to reduce mortality and restore gut-brain functionality in 
these individuals.

Concerning the treatment of comorbidities, conven-
tional drug therapies to manage a particular comorbidity 
could affect the pathogenesis of the other and may lead 
to worsening symptoms. For example, some psychotro-
pic medications may lead to cardiac abnormalities [62]. 
Hence, in subjects with BPD, the treatment plan should 
be holistic, taking into consideration the overall medi-
cal profile of the subjects, especially given the increased 
association of the condition with cardiovascular diseases. 
Additionally, awareness should be raised among the sub-
jects and their families about the possible association 
between the two conditions (BPD and cardiovascular 

Fig. 8 Application of betweenness centrality-based clustering to the comorbidity network of young mTBI subjects. Individual clusters encompass nodes 
and edges that represent the comorbidity and the association between them, respectively
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diseases), which could lead to changes in lifestyle and 
increased compliance with the treatment plan. Fur-
ther, accessibility to health infrastructure (physical and 
mental health) and availability of support systems could 
lead to meaningful benefits in subjects affected by both 
conditions.

More research is required to probe the shared patho-
physiological mechanisms and pathways behind the asso-
ciation of comorbidities observed in the study. Research 
in this direction could highlight the shared biological 
pathways responsible for the association of BPD and 
cardiovascular conditions, which in turn could lead to 

the development of targeted drug regimens to treat the 
condition. Lastly, future research could produce a clearer 
picture of the role of the immune system [63, 64], mito-
chondrial dysfunction [65], and the gut-brain axis [56] in 
the association between PTSD and liver disease.

Limitations of the study and future work
One of the potential drawbacks of the study is the inabil-
ity to establish directionality when assessing associa-
tions between comorbidities. For example, if there is an 
association between comorbidities A and B in the study, 
one won’t be able to establish if A preceded B or B pre-
ceded A. Currently, it may not be possible to construct 
a directed disease comorbidity network using the data 
in the database. All that one can say is the presence or 
absence of a link between the two comorbidities under 
study. However, constructing directed disease comorbid-
ity networks would be challenging as it requires tedious 
documentation of each patient visit and the comorbidi-
ties diagnosed during the visit [27, 42]. Another limita-
tion of the study is its limited sample size. The number of 
mild TBI subjects in the TBIMS database [28] those who 
answered the NHANES survey at 5 years post-injury is 
223–228, and we included all of them according to the 
inclusion criteria discussed in the METHODS section. 
The sample size could be even lower when considering 
patient subgroups (old vs. young, male vs. female). Pos-
sible reasons could be that mild TBIs may not produce 
any discernible symptoms, and hence, subjects may not 
seek medical care leading to underreporting of the actual 
number of incidents [66]. Additionally, subjects in the 
database underwent in-patient hospitalization in one of 
their centers [28]. Additional data could be sought from 
many other small or outpatient centers, but data integra-
tion and subject follow-up could pose significant chal-
lenges in obtaining a larger sample size. One of our future 
aims is to integrate data from different trauma centers 
and hospitals in the country (India) and develop a large-
scale database of TBI subjects along with their follow-up 
information. Such a database could overcome the limita-
tions of the small sample size observed in the study.

Due to the absence of a control group, enough care 
should be taken while interpreting the results of associa-
tions between comorbidities in the study. While the pres-
ence of a control group could have highlighted the unique 
effects of acquiring mild TBIs, we aim to document the 
novel patterns and associations between comorbidi-
ties in mild TBI subjects, irrespective of whether they 
were caused by the injury. Our aim is not to quantify the 
extra burden posed by the comorbidities on the subjects 
affected by the condition but to draw a clear picture of 
associations and trends among the 26 comorbidities of 
interest. Our reasoning is based on the fact that comor-
bidities and their associations may influence patient 

Table 1 Difference in comorbidity patterns between young and 
old mTBI subjects
No. Description All 

subjects
Old 
subjects

Young 
subjects

Psychiatric group
1 Co-occurrence of psychi-

atric comorbidities
Yes (Clus-
ters 1,3)

Yes (Clus-
ter 1)

Yes (Clus-
ters 1,2,4,5)

2 RA and Psychiatric 
comorbidities

Yes (Clus-
ters 1,3)

Yes (Clus-
ter 1)

Yes (Clus-
ter 5)

3 CP and Psychiatric 
comorbidities

Yes (Clus-
ter 1)

Yes (Clus-
ter 1)

No

4 LD and Psychiatric 
comorbidities

Yes (Clus-
ter 1)

No Yes (Clus-
ters 2,4)

5 Emphysema and Psychiat-
ric comorbidities

Yes (Clus-
ter 1)

Yes (Clus-
ter 2)

Yes (Clus-
ter 1)

OCD group
6 Co-occurrence of OCD 

with RA and ADDADHD
Yes (Clus-
ter 3)

No Yes (Clus-
ter 5)

Cardiovascular group
7 Co-occurrence of cardio-

vascular comorbidities
Yes (Clus-
ters 4, 5)

Yes (Clus-
ter 2)

Yes (Clus-
ters 3,7)

8 Co-occurrence of cardio-
vascular and pulmonary 
comorbidities

Yes (Clus-
ter 4)

Yes (Clus-
ter 2)

Yes (Clus-
ters 1,6)

9 Co-occurrence of cardio-
vascular comorbidities 
and BPD

Yes (Clus-
ter 4)

No Yes (Clus-
ter 3)

10 Co-occurrence of cardio-
vascular and neurologic 
comorbidities

Yes (Clus-
ter 5)

No Yes (Clus-
ter 6)

11 Co-occurrence of cardio-
vascular and rheumato-
logic comorbidities

Yes (Clus-
ters 5, 6)

No No

12 Co-occurrence of cardio-
vascular comorbidities 
and diabetes

Yes (Clus-
ter 2)

Yes (clus-
ter 4)

No

13 Co-occurrence of cardio-
vascular comorbidities 
and cataracts

Yes (Clus-
ter 2)

No No

Pulmonary group
14 Co-occurrence of pulmo-

nary comorbidities
Yes (Clus-
ter 4)

Yes (Clus-
ter 2)

No

Neurologic group
15 Co-occurrence of neuro-

logic comorbidities
Yes (Clus-
ter 5)

Yes (Clus-
ter 3)

No
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outcomes regardless of whether or not they are caused 
by the primary impact. It’s possible that the comorbid-
ity patterns observed in the study could also be noticed 
in subjects without a history of TBIs or in TBI subjects 
before acquiring the index injury. For example, one find-
ing in our study is the association between diabetes and 
cataracts (Fig.  4) and LD with cataracts, both of which 
could be noticed in subjects without TBIs [58, 67]. How-
ever, it should be noted that certain drugs [68] that are 
used in the clinical management of TBIs could lead to the 
early development of cataracts [69]. Additionally, TBIs 
themselves could accelerate the development of specific 
comorbidities that occur commonly in healthy subjects 
[70, 71]. The expedited development of comorbidities 
could be due to accelerated brain aging where the brains 
of subjects affected with TBIs undergo gradual atrophy 
and may appear older than the chronological age of the 
subjects [72]. This, in turn, could lead to an increased 
risk of developing numerous medical, psychiatric, and 
age-related conditions [11, 72]. Therefore, comparing the 
disease comorbidity network of TBI subjects with a con-
trol group could be complicated due to accelerated brain 
aging and may underestimate the actual disease burden 
in the TBI population. Carefully curated longitudinal 
studies that monitor changes in health patterns over time 
in TBI subjects could aid in understanding the distinct 
health trajectories in these subjects..

Lastly, the sample of subjects in the study could be 
heterogeneous owing to sociodemographic factors, age, 
employment, and injury-related factors. TBI itself is het-
erogeneous [2, 26], and heterogeneity is considered one 
of the factors responsible for the poor therapeutic out-
come of its candidate drugs [25]. However, we addressed 
this issue by performing a network analysis of subjects 
stratified by age (old vs. young subjects). In the future, we 
plan to extend the study by performing comorbidity net-
work analysis for subjects based on sex and different TBI 
pathoanatomic types to combat heterogeneity, as recom-
mended in a study [25]. Lastly, the presence of ascertain-
ment bias cannot be ruled out, as comorbidities explored 
in the study could have exhibited a persistent time course 
and gone unnoticed before the incidence of mTBI [8].

Conclusions
Our study demonstrates the effectiveness of translat-
ing disease prevalence data into a graph-theoretical 
framework. This approach yielded insights into comor-
bidity patterns following mTBIs, aligning with previous 
research [34, 44, 50, 56], and presents a highly adaptable 
methodology. The power lies in representing any measur-
able population characteristic as nodes in a network, with 
edges signifying associations between them. This not 
only deepens our understanding but leverages existing 
data efficiently. Since TBI subjects experience a plethora 

of comorbidities over time [10, 11, 27], the study results 
can be effectively employed for monitoring comorbidities 
and establishing effective preventive care. Additionally, 
the approach could be utilized for machine learning-
based identification of high-risk patient cohorts [27].
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