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Abstract
Purpose  To validate JLK-LVO, a software detecting large vessel occlusion (LVO) on computed tomography 
angiography (CTA), within a multicenter dataset.

Methods  From 2021 to 2023, we enrolled patients with ischemic stroke who underwent CTA within 24-hour of onset 
at six university hospitals for validation and calibration datasets and at another university hospital for an independent 
dataset for testing model calibration. The diagnostic performance was evaluated using area under the curve 
(AUC), sensitivity, and specificity across the entire study population and specifically in patients with isolated middle 
cerebral artery (MCA)-M2 occlusion. We calibrated LVO probabilities using logistic regression and by grouping LVO 
probabilities based on observed frequency.

Results  After excluding 168 patients, 796 remained; the mean (SD) age was 68.9 (13.7) years, and 57.7% were men. 
LVO was present in 193 (24.3%) of patients, and the median interval from last-known-well to CTA was 5.7 h (IQR 
2.5–12.1 h). The software achieved an AUC of 0.944 (95% CI 0.926–0.960), with a sensitivity of 89.6% (84.5–93.6%) 
and a specificity of 90.4% (87.7–92.6%). In isolated MCA-M2 occlusion, the AUROC was 0.880 (95% CI 0.824–0.921). 
Due to sparse data between 20 and 60% of LVO probabilities, recategorization into unlikely (0–20% LVO scores), 
less likely (20–60%), possible (60–90%), and suggestive (90–100%) provided a reliable estimation of LVO compared 
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Introduction
Recent advancements in stroke imaging and the devel-
opment of procedural devices have extended the thera-
peutic window for endovascular thrombectomy (EVT) in 
patients with large vessel occlusion (LVO) [1]. Accumu-
lated evidence has redefined the standard of care for LVO 
patients presenting within 6 to 24 h of their last known 
well time [2, 3]. Because of limited access to the advanced 
imaging techniques globally, such as magnetic resonance 
(MR) perfusion or computed tomography (CT) perfusion 
imaging [4], recent trials have shed light on more read-
ily available imaging techniques, such as CT angiography 
(CTA) [5, 6].

Although CTA is primarily utilized for EVT deci-
sion-making, swift and accurate interpretation of CTA 
remains challenging in most emergency rooms without 
vascular experts, where two-thirds of EVT candidates 
are routed [7]. Even within comprehensive stroke cen-
ters, enhancing the ability to screen CTA for LVO could 
improve procedural efficiency, optimize staffing, and 
reduce the time from patient arrival to treatment initia-
tion. With the advent of deep learning, several software 
packages for detecting LVO in CTA are commercially 
available [8, 9, 10]. To effectively implement the artifi-
cial intelligence (AI) software in clinical practice, thor-
ough validation using external data not involved in model 
training is imperative.

In medical contexts, there is often an imbalance 
between normal and abnormal data, which hampers deep 
learning model training [11]. Data augmentation [12] and 
random under-sampling [13] are common techniques for 
addressing class imbalance, often improving model per-
formance. However, in cases where augmentation may 
distort data, model calibration may be considered to 
compensate for the imbalance [14]. Ensuring confidence 
calibration for deep learning models using large multi-
center datasets enhances the reliability of their predic-
tions, which is crucial for their practical deployment in 
safety-critical tasks like medical diagnosis [15]. However, 
the calibration of deep learning algorithm for detecting 
LVO in CTA has been never attempted.

In this prospective multicenter study from 6 compre-
hensive stroke centers, we aimed to clinically validate the 
commercially available automated LVO detection soft-
ware (JLK-LVO, JLK Inc., Seoul, Korea) [16] in CTA and 
to calibrate the probability of the deep learning algorithm 
using real-world data. Additionally, we investigated the 

clinical implications of these calibrated LVO probability 
scores in relation to infarct volumes on follow-up diffu-
sion-weighted imaging (DWI) and functional outcomes 
three months post-ischemic stroke. This may help further 
extend the clinical applicability of AI software packages.

Materials and methods
Study populations
This multicenter study is based on a brain imaging sub-
study of the ongoing nationwide stroke registry, Clinical 
Research Collaboration for Stroke in Korea (CRCS-K), 
which has recruited over 160,000 patients with stroke 
[17]. We consecutively enrolled patients with ischemic 
stroke or transient ischemic attack who were admitted 
within 7 days of symptom onset from April 2022 to April 
2023 at five comprehensive stroke centers (Supplemen-
tary Fig. S1). To ensure the heterogeneity of the data, we 
additionally enrolled a consecutive series of patients from 
January 2021 to March 2022 at Samsung Medical Cen-
ter, which did not participate in the nationwide stroke 
registry (Supplementary Fig. S1). Exclusion criteria were 
(1) CTA performed beyond 24 h of symptom onset, (2) 
poor image quality or insufficient contrast to analyze, (3) 
hemorrhagic transformation or brain tumor, and (4) CTA 
acquired after EVT.

Ethics
All patients, or their legal representatives if the patient 
was unable to communicate, provided written informed 
consent. The study was developed in accordance with the 
Declaration of Helsinki and approved by the institutional 
review board of Seoul National University Bundang Hos-
pital [B-2307-841-303].

Independent validation dataset
To test the model calibration result, we enrolled a con-
secutive series of patients with ischemic stroke undergo-
ing CTA within 24 h of symptom between February 2022 
to November 2023 at another comprehensive stroke cen-
ter participating nationwide stroke registry. We excluded 
patients according to the aforementioned criteria.

Clinical data collection
We retrieved baseline demographic and clinical infor-
mation for all study participants from a web-based 
prospective stroke cohort (strokedb.or.kr). The stroke 
characteristics included the time interval between the 

with mathematical calibration. The category of LVO probabilities was associated with follow-up infarct volumes and 
functional outcome.

Conclusion  In this multicenter study, we proved the clinical efficacy of the software in detecting LVO on CTA.
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onset of symptoms and time of CTA, the National Insti-
tutes of Health Stroke Scale (NIHSS) score [18] at admis-
sion, and treatment information. The functional status at 
3 months after stroke was measured using the modified 
Rankin Scale (mRS) score [19], which was determined 
through a structured telephone interview by an experi-
enced physician assistant at each hospital as previously 
reported [20, 21].

CTA imaging protocols
CT angiography images were acquired according to stan-
dard departmental protocols in each hospital. The scan-
ning parameters were 90 ~ 120 kVp, 60 ~ 376 mAs, 38.4 
or 40-mm beam collimation, 0.33 ~ 0.6-second rotation 
time, and 0.625 ~ 2 mm thickness (Supplementary Table 
S1). Diffusion-weighted images were acquired using 
1.5 or 3.0 T MRI systems (majority [> 95%] of systems 
are Phillips or Siemens). Slice thickness was 3 ~ 5  mm, 
spacing between slices 3.3 ~ 6.5  mm, pixel spacing 
0.469 ~ 1.375  mm, repetition time 2426 ~ 8800 ms, echo 
time 64 ~ 108 ms.

CTA imaging analysis by vascular experts
In the present study, anterior circulation LVO was opera-
tionally defined as an arterial occlusion encompassing 
the intracranial segment of the internal carotid artery 
(ICA), as well as the M1 and M2 segments of the middle 
cerebral artery (MCA-M1 and MCA-M2, respectively). 
The term “intracranial ICA” specifically denotes the seg-
ment extending from the petrous part to the bifurcation 
with the MCA and the anterior cerebral artery (ACA) 
[22]. The MCA-M1 segment encompasses the stretch 
from the MCA-ACA bifurcation to the initial branching 
of the MCA, while the MCA-M2 segment includes the 
part ascending vertically along the Sylvian fissure from 
the MCA branching point [22]. In cases where the MCA 
divided early, a functional classification was utilized 
whereby the segment closest to the origin was labeled as 
M1, with subsequent downstream branches classified as 
M2 [23]. To confirm the presence of LVO, CTA source 
images, maximum intensity projection (MIP) images, and 
three-dimensional rendering images were thoroughly 
examined by two experienced vascular neurologists 
(W-S.R and S.H), alongside an evaluation of patients’ 

Table 1  Baseline characteristics of patients in participating centers
Hospital A
(n = 116)

Hospital B
(n = 144)

Hospital C
(n = 96)

Hospital D
(n = 85)

Hospital E
(n = 104)

Hospital F
(n = 251)

p

Age 69.2 ± 12.9 68.7 ± 14.3 69.1 ± 14.0 71.2 ± 13.4 67.7 ± 15.4 68.5 ± 12.9 0.29
Sex, male 60 (51.7%) 84 (58.3%) 52 (54.2%) 45 (52.9%) 65 (62.5%) 153 (61.0%) 0.41
Large vessel occlusion 26 (22.4%) 41 (28.5%) 23 (24.0%) 21 (24.7%) 20 (19.2%) 62 (24.7%) 0.69
  Isolated MCA M2 occlusion 6 (5.2%) 6 (4.2%) 1 (1.0%) 5 (5.9%) 5 (4.8%) 16 (6.4%) 0.41
Infarct location 0.026
  Anterior circulation 70 (60.3%) 96 (68.1%) 48 (50.5%) 58 (68.2%) 63 (60.6%) 169 (67.9%)
  Posterior circulation 26 (22.4%) 22 (15.6%) 33 (34.7%) 21 (24.7%) 20 (19.2%) 49 (19.7%)
  Multiple 5 (4.3%) 6 (4.3%) 7 (7.4%) 1 (1.2%) 5 (4.8%) 12 (4.8%)
  No lesion 15 (12.9%) 17 (12.1%) 7 (7.4%) 5 (5.9%) 16 (15.4%) 19 (7.6%)
Initial NIHSS score 3 (0–7) 3 (1–9) 3 (1–8) 5 (1–10) 4 (1–9) 3 (1–8) 0.18a

Previous stroke 15 (12.9%) 20 (13.9%) 23 (24.0%) 22 (25.9%) 15 (14.4%) 58 (23.1%) 0.02
Hypertension 70 (60.3%) 91 (63.2%) 66 (68.8%) 60 (70.6%) 77 (74.0%) 153 (61.0%) 0.13
Diabetes 28 (24.1%) 47 (32.6%) 32 (33.3%) 23 (27.1%) 36 (34.6%) 86 (34.3%) 0.39
Atrial fibrillation 27 (23.3%) 30 (20.8%) 23 (24.0%) 26 (30.6%) 27 (26.0%) 46 (18.3%) 0.24
High-risk cardioembolic source 29 (25.0%) 32 (22.2%) 23 (24.0%) 26 (30.6%) 28 (26.9%) 59 (23.6%) 0.66
CT vendor < 0.001
  Philips 116 (100.0%) 3 (2.1%) 0 0 0 0
  GE medical systems 0 140 (97.9%) 0 0 0 250 (99.6%)
  SIEMENS 0 0 96 (100.0%) 82 (96.5%) 0 0
  Toshiba (Canon) 0 0 0 3 (3.5%) 104 (100%) 1 (0.4%)
Onset to CTA, hr 11.7 (3.2–27.2) 4.8 (2.3–13.1) 11.9 (5.2–23.9) 4.3 (2.0–11.0) 8.6 (2.5–21.5) 7.6 (3.7–13.9) < 0.001 a

Revascularization therapy < 0.001 a

  Intravenous only 5 (4.3%) 14 (9.7%) 11 (11.5%) 12 (14.1%) 14 (13.5%) 11 (4.5%)
  Endovascular therapy only 11 (9.5%) 15 (10.4%) 5 (5.2%) 13 (15.3%) 6 (5.8%) 27 (11.0%)
  Combined 12 (10.3%) 18 (12.5%) 4 (4.2%) 5 (5.9%) 5 (4.8%) 6 (2.5%)
Interval between CTA and DWI, hr 1.6 (0.9–2.9) 0.5 (0.2–2.1) 0.8 (0.4–2.5) 1.6 (1.1–2.9) 2.1 (1.2–7.8) 1.7 (1.2–2.7) < 0.001 a

Infarct volume on DWI, mL 2.8 (0.3–22.0) 1.8 (0.3–10.8) 3.4 (1.1–32.5) 0.5 (0.1–3.1) 0.6 (0.1–6.2) 4.5 (0.5–35.6) < 0.001 a
aKruskal-Wallis test was used. Data are presented as mean ± standard deviation, median (interquartile range), or number (percentage). MCA = middle cerebral artery; 
NIHSS = National Institute of Health Stroke Scale; CTA = CT angiography; DWI = diffusion-weighted imaging
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magnetic resonance imaging (MRI) scans and symptom-
atic data. In cases of diagnostic discrepancy, a final deter-
mination was made by an experienced neuroradiologist 
(L.S). Along with the presence of LVO, location (ICA, 
MCA-M1, and MCA-M2), and the side of LVO were 
recorded. For bilateral occlusions, a true positive was 
defined when the AI software-generated heatmap was 
present on both sides, with the smaller side being at least 
50% of the larger side. We define acute LVO as LVO rele-
vant to the index stroke, whereas chronic LVO is defined 
as LVO that is not relevant to the index stroke. Relevant 
MCA stenosis is defined as moderate to severe stenosis 
on CTA that are related to infarcts observed on DWIs.

Deep learning-based software
Source images of CTA with slice thickness between 
0.5 ~ 2  mm were fed into the commercially available 
deep learning-based software (JLK-LVO, JLK Inc., Seoul, 
Korea) [16, 24]. In brief, an automated algorithm selects 
slices from source images to construct MIP images. The 
vessel segmentation involves a 2D U-Net based on the 
Inception Module [25], trained to segment vessels in 
axial MIP images. A vessel occlusion detection algorithm 
follows, involving the combination of vessel masks into a 
compressed image for training an EfficientNetV2 model 
[26]. Finally, the model produced LVO score, probability 
of LVO by the algorithm, and the side of LVO based on 
comparison of heatmap size between hemispheres.

Follow-up imaging analysis
Infarct location was categorized as anterior circulation, 
posterior circulation, and multiple based on the review 
of follow-up DWI by an experienced vascular neurolo-
gist (J-W. Chung). Follow-up DWI within 7 days after 
CTA were included to analyze the association between 

LVO score and follow-up infarct volumes. High signal 
intensity area on b1000 DWI scan were automatically 
segmented using a validated 3D U-net software pack-
age (JLK-DWI, JLK Inc., Seoul, Korea) [27, 28]. The seg-
mented infarct area was meticulously supervised by an 
experienced vascular neurologist (J-W. Chung), with 
manual edits applied when necessary to ensure accuracy.

Probability calibration
We calibrated the LVO probability score using data from 
six hospitals in two ways. First, we ran a univariate binary 
logistic regression model with the ground truth label of 
LVO. In the mode, ground truth label was entered as a 
dependent variable and LVO probability for the algo-
rithm as an independent variable. After running the 
model, calibrated LVO probabilities were obtained. Using 
the ‘pmcalplot’ command in STATA [29], we displayed a 
calibration plot comparing observed to expected prob-
abilities, using either non-calibrated or calibrated proba-
bility scores. Second, we divided patients into ten groups 
at 10% intervals of non-calibrated LVO probability and 
assessed the observed frequency of LVO in each group. 
Subsequently, we arbitrarily categorized patients into 
four groups based on the observed frequency of LVO. 
Using the independent validation dataset, we tested the 
probability calibration results as means of adjusted LVO 
probability and 4 categorized groups.

Statistical analysis
Baseline characteristics among participating centers 
were compared using the ANOVA or Kruskal-Wallis test 
for continuous variables, and the chi-square test for cat-
egorical variables, as appropriate. To validate the accu-
racy of the software in diagnosing LVO, we computed the 
AUROC, as well as sensitivity, specificity, PPV, and NPV. 

Fig. 1  Diagnostic performance of JLK-LVO in the entire population. (A) Overall diagnostic performance, (B) diagnostic performance in patients with 
isolated MCA-M2 occlusion
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A 1000-repeat bootstrap analysis was employed to calcu-
late the 95% confidence intervals (CIs) for all parameters. 
The AUROC was used in combination with the DeLong 
method [30] to compute the standard error (SE) of the 
AUROC. The cutoff for the LVO score used in the analy-
sis was set at 0.5. A true positive was defined when both 
the presence and side of LVO were concordant between 
JLK-LVO and the experts’ consensus. If the presence of 
LVO was correctly identified but the side was incorrect, 
the case was classified as a false negative. We conducted 
additional analyses to determine the optimal threshold 
that would yield the maximum Youden index (sensitiv-
ity + specificity − 1). Given that the software is primarily 
intended for screening LVO, we also computed specific-
ity, PPV, and NPV at a sensitivity level of 0.90. In addi-
tion, because clinicians have access to relevant clinical 
information before conducting CT imaging, we built 

three binary logistic regression models to detect LVO: 
one using only the NIHSS score, another using only the 
LVO score, and a third combining both NIHSS and LVO 
scores. We then compared the performance of these 
models using AUROC. Furthermore, we performed the 
AUROC analysis at each participating center. To test the 
deep learning algorithm’s ability to detect isolated MCA-
M2 occlusion, we reran the analysis for patients with 
isolated MCA-M2 occlusion, including those without 
LVO as the control group. After stratifying patients into 
groups—acute LVO, chronic LVO, isolated MCA-M2 
occlusion, relevant MCA stenosis, and no steno-occlu-
sion of MCA—we compared LVO scores using ANOVA 
with Tukey for multiple comparison. The association 
between the calibrated LVO groups and infarct vol-
umes on DWI was analyzed using dot plots and ANOVA 
with Tukey post-hoc comparison in the independent 

Fig. 2  Box plots for LVO score s after stratifying patients according to vessel status. LVO = large vessel occlusion; MCA = middle cerebral artery. Boxes and 
midline indicate interquartile ranges and the median of LVO scores. Whiskers indicate 5 ~ 95 percentile of data
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validation dataset. Additionally, the relationship between 
the calibrated LVO groups and the 3-month mRS score 
was analyzed using the Cochran–Armitage test in the 
independent validation dataset. All statistical analyses 
were performed using STATA software (version 16.0, 
TX, USA) and MedCalc (version 17.2, MedCalc Software, 
Ostend, Belgium, 2017). A P value < 0.05 was considered 
statistically significant.

Results
Study population
During the study period, a total of 1,391 patients with 
ischemic stroke or transient ischemic attack were admit-
ted, and 964 (69.3%) underwent CTA in the emergency 
room. According to the exclusion criteria, 168 patients 
were excluded, leaving 796 for analysis. The mean 
age ± SD of the study population was 68.9 ± 13.7 years, 
and 57.7% were male. LVO was found in 193 (24.2%) 
patients, and the median interval from last known well to 
CTA was 5.7  h (IQR 2.5 to 12.1  h). Demographic char-
acteristics were comparable among the participating 
centers, except for a history of previous stroke (Table 1). 
However, the intervals from the last known well to CTA, 
the prevalence of revascularization therapy, and infarct 
volumes on follow-up DWI were significantly different. 
Additionally, CT vendors and parameters of CTA varied 
significantly across participating centers (Supplementary 
Table S1). For the independent validation dataset, mean 
(SD) age was 71.0 (12.8) and 58.1% were male (Supple-
mentary Table S2).

Performance of automated LVO detection software
Histogram of LVO score stratified by the presence of 
LVO showed that the algorithm clearly differentiates 

LVO from non-LVO (Supplementary Fig. S2). The soft-
ware achieved an AUROC of 0.944 (95% CI, 0.926–0.960; 
Fig. 1a) at a cutoff point of 0.50 for the entire population. 
The sensitivity, specificity, PPV, and NPV were 89.6%, 
90.4%, 74.9%, and 96.5%, respectively (Table  2). The 
highest Youden index was observed at the optimal cut-
off point of 0.405, with corresponding values of 91.2% for 
sensitivity, 89.4% for specificity, respectively. At a fixed 
sensitivity of 0.90, the specificity was 90.2%. In each par-
ticipating center, AUROC ranged from 0.913 to 0.970 
(Supplementary Fig. S3). When restricted the analysis 
in patients with isolated MCA-M2 occlusion, AUROC 
was 0.880 (0.824–0.921, Fig. 1b). At the highest Youden 
index (0.657; 95% CI, 0.514–0.764), the optimal crite-
rion, sensitivity, and specificity were 0.405, 76.3%, and 
89.4%, respectively. The NIHSS-only model achieved an 
AUROC of 0.819 (95% CI, 0.785–0.853; Supplementary 
Fig. 4). The LVO-only model yielded an AUROC of 0.939 
(0.922–0.957), which was significantly higher than that 
of the NIHSS-only model. When both NIHSS and LVO 
scores were incorporated into the model, the AUROC 
increased to 0.959 (0.947–0.971), which was significantly 
higher than the other two models.

LVO scores according to vessel status
When stratified patients into five distinct groups (acute 
LVO, chronic LVO, isolated MCA-M2 occlusion, rel-
evant MCA stenosis, and no steno-occlusion of MCA), 
the medians (IOR) of LVO scores were 99.8 (97.2–99.97), 
99.1 (97.3–99.99), 82.1 (40.9–98.2), 15.3 (2.4–77.4), and 
0.5 (0.1–6.5), respectively (Fig. 2). Compared with the no 
steno-occlusion of MCA group, the median LVO scores 
of relevant MCA stenosis group was significantly higher 
(p < 0.001).

Table 2  Diagnostic performance of software detecting large vessel occlusion
Threshold
of 0.50

Confusion matrix Prediction
LVO No LVO

Ground truth, LVO 173 20
Ground truth, no LVO 58 545
Sensitivity (95% CI) 0.896 (0.845–0.936)
Specificity (95% CI) 0.904 (0.877–0.926)
PPV (95% CI) 0.749 (0.688–0.804)
NPV (95% CI) 0.965 (0.946–0.978)

Optimal threshold Youden (J) index (95% CI) 0.806 (0.741–0.843)
Jmax cutoff point 0.405
Jmax Sensitivity 0.912 (0.863–0.948)
Jmax Specificity 0.894 (0.867–0.917)

Fixed sensitivity of 0.90 Sens90 Specificity (95% CI) 0.902 (0.876–0.925)
Sens90 PPV (95% CI) 0.747 (0.686–0.801)
Sens90 NPV (95% CI) 0.966 (0.948–0.980)
Sens90 cutoff point 0.473

Jmax represents, across all thresholds, the maximum Youden index (sensitivity + specificity − 1). As a secondary reference point, Jmax provides an optimality 
criterion with equal weighting for sensitivity and specificity. LVO = large vessel occlusion; CI = confidence interval; PPV = positive predictive value; NPV = negative 
predictive value
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Calibration of LVO score
Non-calibrated LVO probabilities significantly overes-
timated LVO, as the observed/expected LVO ratio was 
0.792 (Fig. 3a). Calibrated LVO probabilities achieved an 
observed/expected LVO ratio of 1.00 (Fig. 3b). However, 
due to sparse data between LVO probabilities of 0.2 to 
0.6, the point estimations at adjusted probabilities of 0.4, 
0.6, and 0.8 exhibited discrepancies between the expected 
and observed frequencies of LVO even after the calibra-
tion. Moreover, in the independent validation dataset, the 
calibrated probability of LVO underestimated observed 
frequency of LVO with the observed/expected LVO ratio 
was 1.329 (Fig. 3c), indicating underestimation of LVO.

As the LVO score percentile increased, the observed 
frequency of LVO increased in a stepwise manner (p for 
trend < 0.001; Fig.  3d). However, due to the pronounced 
bimodal distribution of LVO scores (Supplementary Fig. 
S2), the observed frequencies of LVO between 20% and 
90% showed a low concordance compared to the pre-
dicted probability. Based on these results, we arbitrarily 
recategorized subjects into four groups: unlikely (LVO 
scores of 0–20), less likely (20–60), possible (60–90), 
and suggestive (90–100). After the recategorization, 
each group represented observed frequencies (2.4, 16.9, 
56.0, and 79.8%, respectively) well without overlapping 
confidence intervals (Fig.  3e). In addition, observed fre-
quencies of EVT were 5, 10, 24, and 49% in each group, 
respectively (Supplementary Fig. S5). In the independent 
validation dataset, the recategorized group also repre-
sented observed frequency of LVO (6.2, 12.5, 60.0, and 

90.7%, respectively) although the confidence interval of 
observed frequency was somewhat wide in the possible 
LVO group due to small sample size.

Associations of LVO scores with infarct volumes and 
functional outcome
Follow-up DWIs within 7 days of the last known well 
were available for 139 (93.9%) patients in the independent 
validation dataset. The median (IQR) interval between 
CTA and DWI was 2.1 (0.5–57.7) hours. The median 
(IQR) infarct volumes of the unlikely, less likely, possible, 
and suggestive groups were 0.9 mL (0.2–5.9 mL), 2.9 mL 
(1.0–21.0 mL), 2.5 mL (1.1–72.4 mL), and 11.4 mL (0.9–
79.8 mL), respectively (p for difference = 0.001; Fig.  4a). 
Additionally, we observed a significant trend of shifting 
3-month mRS scores to higher scores as the recatego-
rized LVO score groups increased (p = 0.047; Fig. 4b). A 
representative case was elaborated in Supplementary 
Fig. 6.

Discussion
In this multicenter study comprising 796 consecutive 
series of patients with ischemic stroke or transient isch-
emic attack from 6 university hospitals, we observed 
the robust clinical efficacy of JLK-LVO, an automated 
software detecting LVO on CTA utilizing a deep learn-
ing algorithm. Using a real-world clinical dataset, we 
calibrated the LVO score derived from deep learning 
and suggested a new category for better understand-
ing of probability for clinicians. Additionally, we found 

Fig. 3  Predicted frequency and observed frequency of LVO before and after recategorization of LVO score. (A-C) Calibration plots showing observed 
probability against expected probability using either unadjusted LVO probability (A) or adjusted LVO probability (B) in the validation and calibration 
dataset and the independent validation dataset (C). The green dotted line indicates the reference line of perfect agreement. Red spikes indicate each 
case with LVO (up spike) and without LVO (down spike) at each LVO probability. O: E = ratio of observed and expected LVO frequency; CITL = Calibration-
in-the-large, also known as mean calibration. (D) The red line indicates perfect calibration. The red boxes indicate the criterion with the highest Youden 
index in each hospital. Observed frequencies and their 95% confidence intervals (red shaded areas) after recategorization of patients in the validation and 
calibration dataset (E) and in the independent validation dataset (F). LVO = large vessel occlusion
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associations of the new category of LVO score with 
infarct volumes on follow-up DWI and 3-month modi-
fied Rankin Scale scores.

Using a multicenter dataset with various CT vendors 
and imaging parameters, JLK-LVO exhibited robust and 
consistent AUROC values ranging from 0.918 to 0.970. 
The deep learning algorithm in this study was trained on 
a large dataset of over 2,700 CTA scans from five hos-
pitals [16, 24], enabling it to maintain its performance 
across different datasets. Additionally, JLK-LVO achieved 
a sensitivity of 76% in detecting isolated MCA-M2 occlu-
sion, which is comparable to that reported by neuroradi-
ologists in a study involving 520 patients with ischemic 
stroke; experienced neuroradiologists missed 26% of 
MCA-M2 occlusions during initial CTA evaluation [31]. 
Given the recent efforts to expand EVT candidacy to 
MCA-M2 segment occlusions [32]. the ability to detect 
MCA-M2 occlusions with high accuracy may facilitate 
the treatment and benefit of more patients undergoing 
EVT.

In the present study, we observed a notable bimodal 
distribution of LVO probabilities score, which, in turn, 
renders calibration challenging in the range with scarce 
data. Additionally, different optimal criteria across par-
ticipating centers suggest that a model-based calibration, 
commonly used in deep learning algorithms [14], is less 
practical and prone to miscalibration due to the highly 
variable disease prevalence and imaging parameters in 
clinical practice. Hence, we collapsed multiple catego-
ries with a similar observed frequency of LVO into one 
and generated four groups that distinctly represent the 
observed frequency of LVO. In the independent valida-
tion dataset, we showed that the recategorized LVO 
probability is well correlated with observed frequency of 
LVO. We believe that this calibrated interpretation, along 
with uncertainty (the range of observed frequency), pro-
vides more reliable results for clinicians.

Of note, LVO scores in patients with relevant MCA 
stenosis were significantly higher (median 15.3 vs. 0.5) 
compared to those without MCA stenosis or occlusion. 

Fig. 4  Relation of LVO scores with follow-up infarct volume and functional outcome. (A) Bars and error bars represent the mean and its standard error. For 
post-hoc comparison, the Tukey method was used. (B) Distributions of 3-month modified Rankin Scale scores according to LVO score groups
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This result indicates that the deep learning algorithm 
utilizes the symmetry of vascular density between hemi-
spheres as an important feature to detect LVO. Consis-
tent with this finding, we observed an association of LVO 
score groups with infarct volume on follow-up DWI and 
3-month modified Rankin Scale score.

The large size of a consecutive series of CTA data from 
various vendors and imaging parameters is a strength 
of our study. Nevertheless, several limitations should be 
acknowledged. We collected data taken in the emergency 
room from university hospitals. Hence, further study is 
required to extrapolate our results to outpatient settings 
or community hospitals. Additionally, the different head 
sizes and nature of LVO across ethnicities limited the 
generalizability of our results [33, 34].

Recent randomized controlled trials [35] have demon-
strated the potential of automated algorithms to reduce 
diagnostic time and improve patient outcomes in acute 
stroke settings. In this trial, an automated algorithm was 
applied to segment the ICA terminus and MCA-M1 seg-
ments, followed by a comparison of the lengths of the 
left and right segmentations to identify cases where the 
ICA terminus and M1 segments were not visible due to 
ICA occlusion and the absence of retrograde filling. Our 
approach, which integrates U-Net for vessel segmenta-
tion with a deep learning model incorporating the ICA 
terminus, M1, M2 segments of the MCA, and their 
branches for LVO prediction, may yield superior results. 
This is because our algorithm leverages not only the ICA 
terminus and M1 segment information but also the den-
sity of their branches within the MCA territory, provid-
ing a more comprehensive analysis.

In conclusion, this multicenter study confirmed the 
performance of deep learning algorithm for detecting 
LVO across various CT vendors and imaging parameters. 
The robust performance of the algorithm, coupled with 
high accuracy in detecting MCA-M2 occlusions, may 
enhance stroke workflow, particularly in resource-limited 
communities. Furthermore, calibrating the LVO prob-
ability provides more reliable and interpretable results for 
clinicians, especially early-career physicians worldwide.
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