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Abstract
Background  Growth-associated protein 43 (GAP-43) is a key protein involved in neuronal growth and synaptic 
plasticity. Alterations in GAP-43 levels have been associated with Alzheimer’s Disease (AD), potentially reflecting 
synaptic dysfunction. We evaluated the potential of GAP-43 as a biomarker for AD and explored its association with 
amyloid-beta (Aβ) levels, as well as its correlation with Aβ plaque burden in the brain.

Methods  We screened 1,639 participants from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) cohort. A 
total of 226 individuals met the eligibility criteria and were enrolled. Participants were classified into three groups: 77 
cognitively normal (CN) individuals, 111 with mild cognitive impairment (MCI), and 38 with a diagnosis of AD. The 
associations between cerebrospinal fluid (CSF) GAP-43 levels with other biomarkers as well as [¹⁸F] AV-45 (Florbetapir) 
PET Standardized Uptake Value Ratios (SUVR) were investigated.

Results  Our findings revealed significantly elevated CSF GAP-43 levels in individuals with AD compared to CN and 
MCI groups. Furthermore, GAP-43 levels showed a significant positive correlation with tau pathology. Notably, we 
observed a significant association between GAP-43 and [¹⁸F] Florbetapir PET SUVR in the MCI group, suggesting that 
GAP-43 may serve as a reliable biomarker in the early stages of AD.

Conclusion  This study provides evidence supporting the role of GAP-43 as a potential biomarker for AD, particularly 
in relation to predicting the amyloid pathology pattern in the brain in the MCI stage.

Keywords  Alzheimer’s disease, Mild cognitive impairment, Growth associated protein 43, Positron emission 
tomography

Growth associated protein 43 (GAP-43) 
predicts brain amyloidosis in Alzheimer’s 
dementia continuum: an [18 F] AV-45 study
Rezvan Nemati1, Ahmadreza Sohrabi-Ashlaghi2, Parsa Saberian3*, Mohammad Sadeghi4,5 , Sajjad Mardani6, Amir 
Sina Jafari Hossein Abadi7, Ali Yaghoobpoor8, Atefeh Heydari9, Niloofar Khoshroo10, Yassin Rahnama4, 
Mahsa Mayeli4  and Hamide Nasiri11*

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://orcid.org/0000-0003-0351-7876
http://orcid.org/0000-0003-4656-156X
http://crossmark.crossref.org/dialog/?doi=10.1186/s12883-025-04140-5&domain=pdf&date_stamp=2025-3-28


Page 2 of 9Nemati et al. BMC Neurology          (2025) 25:134 

Introduction
Dementia is a major global health concern, with approxi-
mately affecting 46.8  million people worldwide. This 
number is projected to increase to 74.7 million by 2030, 
and to 131.5  million by 2050. The annual incidence of 
new dementia cases is estimated at 9.9  million globally 
[1]. Alzheimer’s disease (AD), the most common form 
of dementia, remains a complex disorder, with its exact 
pathogenesis not fully understood. However, current evi-
dence suggests that AD is strongly associated with the 
extracellular accumulation of amyloid-beta (Aβ) plaques 
and the intracellular formation of neurofibrillary tangles 
(NFTs) consisting of hyperphosphorylated tau protein [2, 
3]. These protein aggregates lead to neuronal damage and 
synaptic loss. Early diagnosis of AD is critical, as disease-
modifying treatments are most effective during the mild 
cognitive impairment (MCI) stage [4]. Due to the com-
plexity of AD and its overlapping clinical features with 
other forms of dementia, particularly in its early phases, 
identifying reliable early diagnostic markers is crucial.

Aβ, a peptide of 36 to 43 amino acids, is generated by 
the enzymatic cleavage of amyloid precursor protein 
(APP) by β-secretase and γ-secretase [5–8]. Aβ naturally 
aggregates in the extracellular space, forming oligomers, 
protofibrils, and mature amyloid fibrils [9–13]. Plasma 
Aβ levels and cerebral β-amyloidosis have been shown to 
correlate with AD pathology and can serve as predictive 
biomarkers [14–16]. Moreover, Aβ accumulation is sensi-
tive to disease stage, with lower levels of Aβ-42 detected 
in cerebrospinal fluid (CSF) during the preclinical phase 
of AD [17, 18].

Growing evidence suggests that Growth Associated 
Protein 43 (GAP-43) levels are significantly elevated in 
the brains of AD patients compared to healthy individu-
als [19–21]. This elevation in GAP-43 levels has been 
observed in regions affected by AD pathology, including 
the hippocampus, amygdala, and cerebral cortex [22]. 
The correlation between GAP-43 levels and the presence 
of NFT and Aβ plaques suggests that GAP-43 may reflect 
the extent of disease progression [20]. GAP-43 is a pro-
tein involved in synaptic plasticity and axonal growth, 
and its altered expression is indicative of synaptic dys-
function and neurodegeneration, making it a potential 
biomarker for AD [23]. Notably, GAP-43 is crucial dur-
ing early brain development, playing a key role in neu-
rite outgrowth, synaptogenesis, and neuronal plasticity. 
Given that AD pathology begins years before clinical 
symptoms manifest, the detection of altered GAP-43 lev-
els in the early stages of the disease suggests its potential 
as an early biomarker for AD [24].

While [18F] Fludeoxyglucose (FDG) PET is a valuable 
tool for diagnosing AD, Amyloid PET imaging, specifi-
cally [¹⁸F] AV45, is considered the gold standard for in 
vivo detection of amyloid plaques. Florbetapir ([¹⁸F] 

AV45) is a PET ligand that binds specifically to Aβ-42 
with high affinity, allowing for the quantification and 
localization of Aβ deposition in the brain [25]. The asso-
ciation between Florbetapir PET findings and postmor-
tem Aβ burden has been well established, making it a 
gold standard for evaluating Aβ deposition in vivo [26].

In this study, we aimed to investigate whether GAP-43 
levels could serve as an indicator of Aβ pathology, which 
could potentially explain the mechanisms of synaptic 
dysfunction and neurodegeneration in AD. Addition-
ally, we hypothesized that GAP-43 levels could predict 
[¹⁸F] AV45 PET standardized uptake value ratio (SUVRs), 
independent of disease stage and other potential con-
founding factors. Establishing a relationship between 
GAP-43 and Aβ depositions could have significant diag-
nostic implications, contributing to the development 
of more accurate biomarker panels for AD which could 
enhance early detection and disease prognostication.

Methodology
Data source
Data for this study was extracted from the Alzheimer’s 
Disease Neuroimaging Initiative (ADNI) database, a 
comprehensive, longitudinal repository of clinical, neuro-
imaging, genomics, and biomarker data from individuals 
with AD, MCI, and healthy controls [25, 27]. The ADNI 
initiative collects and analyzes various data, including 
PET and MRI scans, genetic materials, cognitive assess-
ments, CSF, blood biomarkers, plasma, serum, urine, and 
brain tissue, to investigate predictors of AD progression. 
The data is managed by the Resource Allocation Review 
Committee (RARC) or the Biospecimen Review Com-
mittee (BRC) at the University of Southern California 
(USC). Participants, aged between 55 and 90 years, are 
recruited from 59 research centers across Canada and 
the United States. Informed consent is obtained from all 
participants, and they undergo a series of baseline tests, 
which include genetic testing, clinical evaluations, lum-
bar punctures, neuropsychological assessments, MRI, 
and PET scans. These assessments are repeated annually 
for longitudinal analysis.

For this study, only participants with available [¹⁸F] 
AV45 whole brain normalized SUVR, and GAP-43, Aβ, 
and tau levels, and relevant demographic information 
were included. A total of 226 participants were selected, 
categorized into three groups: cognitively normal (CN, 
n = 77), mild cognitive impairment (MCI, n = 111), and 
AD (AD, n = 38).

CSF sampling, storage, and measurement
CSF samples were collected via lumbar puncture using 
either 20- or 24-gauge spinal needles, in accordance with 
the ADNI procedures manual ​(​​​h​t​t​p​:​/​/​w​w​w​.​a​d​n​i​-​i​n​f​o​.​o​r​
g​/​​​​​)​. Following collection, samples were transferred into 
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polypropylene tubes within one hour and immediately 
frozen on dry ice. Aliquots of 0.5 ml were prepared at the 
ADNI Biomarker Core Laboratory and stored at -80  °C 
for long-term preservation.

CSF biomarkers were analyzed using the fully auto-
mated Cobas e 601 platform, employing electrochemilu-
minescence immunoassays (ECLIA) to measure Elecsys® 
Aβ [1–40], Elecsys® Phospho-Tau (181p), and Elecsys® 
Total-Tau, following the manufacturer’s guidelines. 
For this study, baseline measurements of Aβ, total tau 
(T-tau), phosphorylated tau (P-tau), and GAP-43 were 
utilized.

Positron emission tomography (PET)
Imaging data from the ADNI dataset were processed 
using a standardized preprocessing pipeline, with 
detailed information on image acquisition available 
on the ADNI website (http://adni.loni.usc.edu/). For 
PET scans, [¹⁸F] AV45 was used as the tracer to assess 
amyloid-β (Aβ) burden in the brain. Scans were per-
formed 50 to 70  min after tracer injection. The result-
ing images were averaged, spatially aligned, interpolated 
to a standardized voxel size, and smoothed to achieve a 
uniform resolution of 8 mm full width at half maximum 
[28]. The whole normalized SUVR was calculated by nor-
malizing the cortical composite region intensity to the 
FreeSurfer-defined whole brain normalized SUVR, with a 
threshold set at 1.11 [29, 30].

Statistical methods
All statistical analyses were conducted using SPSS, ver-
sion 26. For continuous variables with a normal distri-
bution, comparisons were performed using one-way 
ANOVA, while the Kruskal-Wallis test was applied for 
non-normally distributed variables. Categorical vari-
ables were analyzed using the Chi-square test. Spear-
man correlation was employed to assess the associations 
between CSF GAP-43, [¹⁸F] AV-45, MMSE, ADAS-Cog 
13, and other CSF biomarkers due to the non-normal dis-
tribution of the data. To investigate the predictor effect 
CSF GAP-43 in [¹⁸F] AV45, we performed multiple lin-
ear regression analysis, adjusting for MMSE, age, sex, 
and education as covariates. Statistical significance was 
defined as a p-value < 0.05. Diagnostic capability of CSF 
biomarkers, specifically GAP-43 was assessed using 
receiver operating characteristic (ROC) curve analyses, 
yielding area under the curve (AUC) values.

Ethical considerations
This study utilized deidentified data from the Alzheimer’s 
Disease Neuroimaging Initiative (ADNI) database, ensur-
ing that no patient-identifying information was accessed 
by any of the authors. In compliance with ADNI proto-
cols, written informed consent was obtained from all 

participants at each site prior to their inclusion in the 
study. All procedures involving human participants were 
conducted in accordance with ethical standards estab-
lished by the relevant national and institutional research 
committees, and in alignment with the principles set 
forth in the Declaration of Helsinki (1964) and its subse-
quent amendments. Detailed information regarding the 
ethical protocols followed in ADNI can be found at adni.
loni.usc.edu.

Results
Demographic characteristics
Table 1 summarizes the demographic and clinical charac-
teristics of the study participants across CN (n = 77), MCI 
(n = 111), and AD (n = 38) groups. The groups did not 
significantly differ in age (p = 0.071) or gender distribu-
tion (p = 0.579). Education years were significantly lower 
in the MCI group compared to CN (p = 0.029), while no 
significant differences were observed between CN and 
AD or between MCI and AD. The MMSE scores were 
significantly lower in MCI compared to CN (p < 0.001) 
and further declined in AD (p < 0.001 for all pairwise 
comparisons). Similarly, ADAS-Cog 13 scores were sig-
nificantly higher in MCI versus CN (p < 0.001) and fur-
ther increased in AD (p < 0.001 for all comparisons). 
CDR-SB scores also increased significantly across diag-
nostic groups (p < 0.001 for all comparisons). Total tau 
(T-tau) and phosphorylated tau (P-tau) levels were sig-
nificantly elevated in AD compared to both CN and MCI 
(p < 0.001), with MCI showing no significant difference 
from CN. In contrast, amyloid-β42 (Aβ42) levels were 
lower in AD compared to both CN and MCI (p < 0.001), 
with a non-significant reduction in MCI versus CN 
(p = 0.062).

Comparison of CSF GAP-43 level and [18F] AV45 in different 
diagnostic groups
Table 2 presents the levels of CSF GAP-43 and [18F] AV45 
metric in the groups. CSF GAP-43 levels showed a sig-
nificant increase in AD compared to both CN and MCI 
(p < 0.001 for both comparisons). However, no significant 
difference was observed between CN and MCI (p = 1.00). 
Similarly, cortical amyloid burden, as measured by [18F] 
AV45 PET, was significantly elevated in AD compared to 
CN and MCI (p < 0.001 for both). No significant differ-
ence was detected between CN and MCI (p = 0.500).

Correlation of GAP-43 with cognitive, imaging, and 
biomarker measures
In the CN group, GAP-43 levels showed a strong posi-
tive correlation with T- tau (r = 0.696, p < 0.001) and 
P-tau (r = 0.483, p < 0.001). In the MCI group, GAP-
43 remained strongly correlated with T-tau (r = 0.641, 
p < 0.001) and P-tau (r = 0.505, p < 0.001), and a moderate 

http://adni.loni.usc.edu/
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positive correlation was observed with [18F] AV45 
(r = 0.243, p = 0.010). Finally, in AD, GAP-43 continued 
to show significant correlations with T-tau (r = 0.485, 
p = 0.002) and P-tau (r = 0.409, p = 0.011). However, the 
correlation with [18F] AV45 did not reach statistical sig-
nificance (r = 0.243, p = 0.142). No significant associations 
were found between GAP-43 levels and Aβ42, MMSE, 
ADAS-Cog 13, or CDR-SB in all groups (Table 3).

Correlation of [¹⁸F] AV45 with cognitive, GAP-43, and 
biomarker measures
In the CN group, [¹⁸F] AV45 showed a significant nega-
tive correlation with CSF Aβ42 (r = -0.735, P < 0.001) 
and a positive correlation with T-tau (r = 0.351, P = 0.002) 
and P-tau (r = 0.425, P < 0.001). In the MCI group, [¹⁸F] 
AV45 demonstrated strong negative correlations with 
CSF Aβ42 (r = -0.743, P < 0.001) and positive correla-
tions with T-tau (r = 0.450, P < 0.001) and P-tau (r = 0.504, 
P < 0.001). Additionally, a significant negative correlation 
was observed between [¹⁸F] AV45 and MMSE (r = -0.287, 
P = 0.002). In the AD group, [¹⁸F] AV45 was negatively 

Table 1  Demographic characteristics of participants
CN
(n = 77)

MCI
(n = 111)

AD
(n = 38)

Comparison P value* P value

Age (years) 71.9 ± 6.7 70.6 ± 7.6 73.1 ± 6.6 CN vs. MCI 0.669 0.071a

CN vs. AD 1.000
MCI vs. AD 0.193

Gender (female) 38 (49.4%) 60 (54.1%) 6 (16.8%) 0.579b

Education (years) 17.2 ± 2.2 16.1 ± 2.6 16.5 ± 2.6 CN vs. MCI 0.024 0.029c

CN vs. AD 0.544
MCI vs. AD 1.000

MMSE 29.14 ± 1.11 27.85 ± 1.88 22.11 ± 3.48 CN vs. MCI < 0.001 < 0.001c

CN vs. AD < 0.001
MCI vs. AD < 0.001

ADAS-Cog 13 7.01 ± 3.36 12.44 ± 7.1 28.32 ± 10.35 CN vs. MCI < 0.001 < 0.001c

CN vs. AD < 0.001
MCI vs. AD < 0.001

CDR-SB 1 ± 0.3 1.18 ± 0.92 5.01 ± 1.97 CN vs. MCI < 0.001 < 0.001c

CN vs. AD < 0.001
MCI vs. AD < 0.001

CSF T-tau (pg/mL) 68.9 ± 36.5 77.4 ± 44 151.7 ± 80.6 CN vs. MCI 0.362 < 0.001c

CN vs. AD < 0.001
MCI vs. AD < 0.001

CSF P-tau (pg/mL) 39.4 ± 26.7 43.4 ± 24 73.6 ± 36.2 CN vs. MCI 0.559 < 0.001c

CN vs. AD < 0.001
MCI vs. AD < 0.001

CSF Aβ42 (pg/mL) 200.6 ± 52.4 182 ± 55.3 132.2 ± 35.2 CN vs. MCI 0.062 < 0.001c

CN vs. AD < 0.001
MCI vs. AD < 0.001

Abbreviations: CN: cognitively normal; MCI: mild cognitive impairment; AD: Alzheimer’s disease; MMSE: Mini-Mental State Examination; CDR-SB: Clinical Dementia 
Rating Scale-Sum of Boxes; ADAS-Cog 13: Alzheimer’s Disease Assessment Scale-Cognitive 13; T-tau: total tau; P-tau: phosphorylated tau; Aβ: amyloid-β; CSF: 
cerebrospinal fluid; a ANOVA test; b Chi square test; c Kruskal-Wallis Test; * Significance values have been adjusted by the Bonferroni correction for multiple tests

Table 2  GAP-43 and [18 F] AV45 alterations across diagnostic groups
CN
(n = 77)

MCI
(n = 111)

AD
(n = 38)

Comparison P value * P value

GAP-43 (pg/Ml) 5209.87 ± 2872.67 5304.65 ± 2763.97 8073.61 ± 3680.66 CN vs. MCI 1.00 < 0.001a

CN vs. AD < 0.001
MCI vs. AD < 0.001

[18F] AV45 1.14 ± 0.26 1.19 ± 0.20 1.42 ± 0.23 CN vs. MCI 0.500 < 0.001a

CN vs. AD < 0.001
MCI vs. AD < 0.001

Abbreviations: CN: cognitively normal; MCI: mild cognitive impairment; AD: Alzheimer’s disease; GAP-43: Growth Associated Protien-43; a ANOVA test; * Significance 
values have been adjusted by the Bonferroni correction for multiple tests
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correlated with CSF Aβ42 (r = -0.376, P = 0.020) and posi-
tively correlated with P-tau (r = 0.569, P < 0.001) (Table 4).

Linear regression analysis of [¹⁸F] AV-45 whole brain 
normalized SUVR and the predictive effect of GAP-43
According to Table 5, linear regression analysis was con-
ducted to assess the predictive effect of GAP-43 on [¹⁸F] 
AV45 normalized SUVR retention in the CN, MCI, and 
AD groups, adjusting for potential confounders includ-
ing age, gender, MMSE, and education. In the CN group, 
GAP-43 was a significant predictor of [¹⁸F] AV45 (stan-
dardized β = 0.264, P = 0.012, model P < 0.001). In the MCI 
group, GAP-43 also demonstrated a significant positive 

association with [¹⁸F] AV-45 (standardized β = 0.220, 
P = 0.022, model P = 0.005). In the AD group, GAP-43 was 
positively associated with [¹⁸F] AV-45, but the association 
did not reach statistical significance for the model (stan-
dardized β = 0.381, P = 0.026, model P = 0.216).

Diagnostic accuracy of CSF biomarkers in differentiating 
cognitive groups
As shown in Table  6, in the CN vs. MCI comparison, 
GAP-43 demonstrated a moderate AUC of 0.514. T-tau 
and P-tau showed stronger diagnostic accuracy with 
AUCs of 0.567 and 0.566, respectively. In contrast, Aβ42 
exhibited minimal diagnostic value, with an AUC of 

Table 3  Correlation of GAP-43 with cognitive, imaging, and biomarker measures across diagnostic groups
CN
(n = 77)

MCI
(n = 111)

AD
(n = 38)

r P value r P value r P value
[18F] AV45 0.180 0.118a 0.243 0.010a 0.243 0.142a

Aβ42 -0.019 0.871a -0.110 0.252a -0.185 0.265a

T-tau 0.696 < 0.001a 0.641 < 0.001a 0.485 0.002a

P-tau 0.483 < 0.001a 0.505 < 0.001a 0.409 0.011a

ADAS-Cog 13 0.000 0.999a 0.144 0.132a -0.103 0.540a

MMSE 0.173 0.133a -0.009 0.924a 0.117 0.486a

CDR-SB 0.043 0.713a -0.161 0.092a 0.035 0.836a

Abbreviations: CN: cognitively normal; MCI: mild cognitive impairment; AD: Alzheimer’s disease; MMSE: Mini-Mental State Examination; CDR-SB: Clinical Dementia 
Rating Scale-Sum of Boxes; ADAS-Cog 13: Alzheimer’s Disease Assessment Scale-Cognitive 13; T-tau: total tau; P-tau: phosphorylated tau; Aβ: amyloid-β; CSF: 
cerebrospinal fluid; a Spearman correlation

Table 4  Correlation of [18F] AV45 with cognitive and biomarker measures across diagnostic groups
CN
(n = 77)

MCI
(n = 111)

AD
(n = 38)

r P value r P value r P value
Aβ42 -0.735 < 0.001a -0.743 < 0.001a -0.376 0.020a

T-tau 0.351 0.002a 0.450 < 0.001a 0.282 0.087a

P-tau 0.425 < 0.001a 0.504 < 0.001a 0.569 < 0.001a

ADAS-Cog 13 0.096 0.405a 0.100 0.295a 0.169 0.309a

MMSE -0.006 0.956a -0.287 0.002a -0.106 0.528a

CDR-SB 0.045 0.701a 0.154 0.107a 0.146 0.383a

Abbreviations: CN: cognitively normal; MCI: mild cognitive impairment; AD: Alzheimer’s disease; MMSE: Mini-Mental State Examination; CDR-SB: Clinical Dementia 
Rating Scale-Sum of Boxes; ADAS-Cog 13: Alzheimer’s Disease Assessment Scale-Cognitive 13; T-tau: total tau; P-tau: phosphorylated tau; Aβ: amyloid-β; CSF: 
cerebrospinal fluid; GAP-43: Growth Associated Protien-43; a Spearman correlation

Table 5  Linear regression analysis of [¹⁸F] AV45 and the predictive effect of GAP-43 across diagnostic groups
CN
(n = 77)

MCI
(n = 111)

AD
(n = 38)

Standardized β t value P value Standardized β t value P value Standardized β t value P value
GAP-43 0.264 2.591 0.012 0.220 2.319 0.022 0.381 2.334 0.026
MMSE -0.126 -1.247 0.217 -0.306 -3.279 0.001 -0.289 -1.694 0.100
Age 0.371 3.661 < 0.001 0.016 0.166 0.869 -0.104 -0.565 0.576
Gender 0.153 1.454 0.150 -0.053 -0.549 0.584 0.075 0.415 0.681
Education -0.170 -1.623 0.109 0.052 0.514 0.608 0.177 1.074 0.291
Adjusted R2 0.235 0.103 0.064
Model
p value

< 0.001 0.005 0.216

Abbreviations: CN: cognitively normal; MCI: mild cognitive impairment; AD: Alzheimer’s disease; MMSE: Mini-Mental State Examination; GAP-43: Growth Associated 
Protien-43
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0.414, showing an inverse association with disease status. 
For the CN vs. AD comparison, GAP-43 showed moder-
ate discriminatory power with an AUC of 0.737, while 
T-tau and P-tau demonstrated excellent performance, 
with AUCs of 0.839 and 0.843, respectively. Aβ42 exhib-
ited a lower AUC of 0.168, further supporting its inverse 
association with disease progression and its limited util-
ity in distinguishing CN from AD. Finally, in the MCI 
vs. AD comparison, GAP-43 showed a similar AUC of 
0.736, reflecting moderate discriminative ability between 
MCI and AD. However, T-tau and P-tau again outper-
formed GAP-43, with AUCs of 0.802 and 0.805, respec-
tively, demonstrating strong diagnostic accuracy. Aβ42 
continued to exhibit poor diagnostic capability, with an 
AUC of 0.233, suggesting an inverse relationship with 
disease progression, as lower Aβ42 levels were associated 
with more advanced stages of Alzheimer’s disease. This 
inverse association indicates the limited utility of Aβ42 in 
distinguishing between MCI and AD (Fig. 1).

Discussion
We explored the association between GAP-43 and brain 
amyloidosis in AD Continuum using [¹⁸F] AV45 PET. 
Our findings show potential diagnostic implications for 
GAP-43 in relation to Aβ pathology and provide insights 

into the mechanisms underlying synaptic dysfunction in 
AD.

Previous research has demonstrated a close connec-
tion between cognitive function and synaptic decline in 
patients with early AD or MCI, even before the clinical 
manifestations, which supports monitoring biomarkers 
reflecting synaptic pathologies, such as the amino acid 
form of Aβ42, T-tau, P-tau, and GAP-43 [20, 31–33]. 
However, there is limited research on the role of CSF 
GAP-43 in the AD continuum. GAP-43 is known for its 
role in synaptic plasticity and axonal growth and elevated 
levels of GAP-43 in regions affected by AD pathology 
hint at its potential involvement in the response to neu-
rodegenerative processes [34, 35].

Our results revealed significant elevations in CSF GAP-
43 levels in individuals diagnosed with AD compared 
to cognitively normal and MCI groups. These findings 
are consistent with previous reports of elevated lev-
els of GAP-43 in CSF in AD [36]. This finding suggests 
that GAP-43 might serve as a potential biomarker, aid-
ing in the differentiation of individuals with dementia 
from those with normal cognition or MCI [20, 37]. For-
mer reports of elevation in CSF GAP-43 levels in MCI 
and dementia patients at baseline, along with signifi-
cant increases over time in preclinical, prodromal, and 
dementia stages of AD, corroborate our initial findings. 

Table 6  Diagnostic performance of CSF biomarkers
CN vs. MCI CN vs. AD MCI vs. AD
AUC P value AUC P value AUC P value

GAP-43 0.514 0.043 0.737 < 0.001 0.736 < 0.001
Aβ42 0.414 0.042 0.168 < 0.001 0.233 < 0.001
T-tau 0.567 0.043 0.839 < 0.001 0.802 < 0.001
P-tau 0.566 0.043 0.843 < 0.001 0.805 < 0.001
Abbreviations: CN: cognitively normal; MCI: mild cognitive impairment; AD: Alzheimer’s disease; T-tau: total tau; P-tau: phosphorylated tau; Aβ: amyloid-βGAP-43: 
Growth Associated Protien-43

Fig. 1  Receiver operating characteristic (ROC) curves for CSF biomarkers GAP-43, Aβ42, T-tau, and P-tau in differentiating cognitive groups. Abbrevia-
tions: MCI vs. CN (A). AD vs. MCI (B). AD vs. MCI (C). CN: cognitively normal; MCI: mild cognitive impairment; T-tau: total tau; P-tau: phosphorylated tau; 
Aβ: amyloid-β
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This extended validation strengthens the argument for 
the diagnostic relevance of GAP-43 across various stages 
of AD [37].

GAP-43 levels in CSF correlate positively with tau 
levels, supporting a mechanistic model for AD. Accord-
ing to this model, synapse changes are essential for the 
spread of tau pathology associated with Aβ. This process 
is a critical factor in the development of neurodegen-
eration and cognitive decline in AD [38–40]. The theory 
that Aβ negatively affects synaptic function is supported 
by evidence from various studies, including in vitro 
investigations, animal trials, and post-mortem analyses. 
These studies demonstrate that Aβ influences glutamate 
reuptake and sensitivity to gamma-aminobutyric acid 
(GABA), adversely affecting synaptic function [41, 42].

Evidence suggests a correlation between tau spread 
and hyperexcitatory synaptic changes in AD. In vitro and 
animal studies have shown increased neuronal activity 
accelerates tau secretion. This leads to the transsynap-
tic propagation of seeding-competent tau, which refers 
to abnormally folded tau proteins capable of initiating 
pathological aggregation. These seeding-competent tau 
proteins can travel across synapses between neurons, 
contributing to tau spread in AD [43, 44].

GAP-43, an enzyme that plays a role in presynaptic 
vesicle cycling, is overexpressed in AD due to hyperex-
citation [21, 45]. The studies provide evidence that when 
GAP-43 is inhibited, there is a significant reduction in 
synaptic glutamate release [46]. This finding highlights 
the critical role of GAP-43 in neurotransmitter release 
and synaptic activity. Increased glutamate release, can 
affect overall glutamate, gamma-aminobutyric acid 
(GABA), dopamine, serotonin, acetylcholine release, and 
synaptic activity and potentially contribute to AD patho-
physiology. Therefore, the increased levels of CSF GAP-
43 in AD may indicate hyper excitatory synaptic changes 
induced by Aβ [47]. Our study findings reveal a signifi-
cant positive association between GAP-43 and T-tau in 
all cognitive groups. Unexpectedly, GAP-43 did not sig-
nificantly correlate with Aβ in any of the three groups. 
The findings from our study align with previous research, 
providing additional support to the notion that CSF 
GAP-43 is more closely linked to tau pathology and neu-
rodegeneration than to Aβ pathology [20, 21, 48].

The observed differences in [¹⁸F] AV-45 levels between 
the CN, MCI, and AD groups provide valuable insights 
into the progression of amyloid pathology across the 
Alzheimer’s continuum. Notably, the higher [¹⁸F] AV-45 
levels in the CN group compared to AD indicate that 
amyloid deposition may initiate early in the disease pro-
cess, potentially preceding detectable cognitive impair-
ment. This finding is consistent with the amyloid cascade 
hypothesis, which suggests that Aβ accumulation is 

one of the earliest pathological events in AD, occurring 
before the onset of clinical symptoms [49].

A key aspect of our investigation was establishing a 
link between GAP-43 and Aβ deposition, as detected 
through [¹⁸F] AV-45 PET. We found that a positive cor-
relation observed between GAP-43 and [¹⁸F] AV-45 lev-
els in individuals across CN and MCI groups suggests a 
potential association between synaptic dysfunction and 
Aβ pathology. This correlation remained consistent even 
when adjusting for MMSE scores, indicating that the link 
between GAP-43 and Aβ is independent of the cognitive 
status. Comparing the diagnostic performance of GAP-
43 and [¹⁸F] AV-45 with core AD biomarkers. In line with 
our result, some studies indicate a significant correlation 
between CSF GAP-43 concentration and [¹⁸F] AV45 [37, 
50]. These findings emphasize the complementary nature 
of various biomarkers in understanding the complex 
landscape of AD pathology. Our study lays the ground-
work for further research into the intricate interplay 
between GAP-43, Aβ pathology, and cognitive decline in 
AD. Future longitudinal studies should explore the tra-
jectory of GAP-43 alterations in relation to disease pro-
gression, considering its potential as an early biomarker. 
Additionally, investigating the molecular mechanisms 
linking GAP-43 and Aβ could unveil novel therapeutic 
targets for mitigating synaptic dysfunction in AD.

Limitations
Incorporating additional imaging techniques and bio-
markers in future studies would provide a more compre-
hensive view of the disease’s complexity. Future research 
with larger sample sizes is needed to confirm our findings 
and provide more robust evidence of the associations 
between GAP-43 and Aβ accumulations across different 
stages of the Alzheimer’s continuum.

Conclusions
This study highlights the potential of GAP-43 as an 
early biomarker for AD. We found significant correla-
tions between GAP-43 levels and key biomarkers of AD, 
including T-tau, P-tau, and [¹⁸F] AV-45 whole brain nor-
malized SUVR, especially in the CN and MCI groups. 
GAP-43 could predict [¹⁸F] AV-45 whole brain normal-
ized SUVR in the CN and MCI groups, suggesting its 
relevance in early disease stages. Overall, GAP-43 could 
complement existing biomarkers, offering improved early 
detection and monitoring of AD. Our findings lay the 
foundation for future research on GAP-43 and AD pro-
gression and the molecular mechanisms linking GAP-43 
and Aβ.
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