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Abstract
Background  Alzheimer’s Disease (AD) is marked by intricate immunological alterations, including the dysregulation 
of interleukin signaling. This study investigates the differential expression and potential roles of interleukins and their 
receptors in AD patients.

Methods  We analyzed the GSE48350 dataset to assess the single-sample Gene Set Enrichment Analysis (ssGSEA) 
scores for interleukins and their receptors between normal and AD groups. Differentially expressed interleukin-related 
genes (DIGs) were identified. Enrichment analysis was conducted to understand functional implications. LASSO 
and logistic regression were used to identify key interleukin genes, which were employed to construct a predictive 
nomogram. This model was validated using the GSE132903 dataset. Unsupervised clustering and immune cell 
infiltration analyses were performed to examine AD patient heterogeneity.

Results  The ssGSEA scores indicated significantly elevated interleukin and receptor levels in AD patients. A total of 
23 DIGs were discovered, and the enrichment analysis emphasized their participation in immune signaling pathways. 
The nomogram based on key interleukin genes demonstrated strong predictive capability, with an AUC of 0.882 in 
the training set and 0.837 in the validation set. Unsupervised clustering revealed two AD subgroups with distinct 
immune profiles and pathway activities. Subgroup C2 exhibited higher immune cell infiltration and pathway activity 
than subgroup C1.

Conclusion  Interleukins and their receptors are significantly upregulated in AD patients, with distinct immune 
profiles identified in AD subgroups. The predictive nomogram effectively stratifies AD patients based on interleukin 
gene expression. These findings provide insights into AD’s immunological landscape and suggest potential 
biomarkers for personalized therapeutic strategies.
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Introduction
Alzheimer’s Disease (AD) is a progressive neurodegen-
erative disorder characterized by cognitive decline, mem-
ory loss, and functional impairment. It affects millions 
of individuals worldwide, posing significant challenges 
to healthcare systems and caregivers [1, 2]. Emerging 
evidence suggests AD is not a single disease entity but 
rather comprises distinct subtypes with heterogeneous 
pathological features and progression patterns. Current 
classifications identify subtypes based on: (1) regional 
atrophy patterns (hippocampal-sparing, typical, and 
limbic-predominant), (2) cerebrospinal fluid biomarker 
profiles, and (3) inflammatory signatures (inflammatory, 
non-inflammatory, and cortical subtypes) [3–5]. Nota-
bly, the inflammatory subtype demonstrates heightened 
activation of microglia and astroglia, increased cytokine 
production, and more rapid cognitive decline compared 
to other subtypes [6, 7]. Despite extensive research, the 
exact pathogenesis of AD remains elusive, with mul-
tiple hypotheses proposed, including amyloid-beta (Aβ) 
plaque deposition, tau protein hyperphosphorylation, 
oxidative stress, and neuroinflammation [8, 9]. Recent 
studies have highlighted the pivotal role of neuroin-
flammation in AD, implicating microglial activation and 
the release of pro-inflammatory cytokines in neuronal 
damage. This chronic inflammation exacerbates synap-
tic dysfunction and accelerates disease progression [10, 
11]. Identifying AD subtypes has profound therapeutic 
implications, as different subgroups may respond pref-
erentially to anti-amyloid therapies, tau-targeted inter-
ventions, or immunomodulatory approaches [12, 13]. 
However, current subtyping frameworks lack integration 
of interleukin network dynamics and immunogenomic 
signatures - a gap this study aims to address through 
comprehensive profiling of interleukin-related pathways.

The pathological role of interleukins in AD is multifac-
eted, encompassing several mechanisms that contribute 
to neurodegeneration. Dysregulated interleukin signaling 
can lead to chronic inflammation within the central ner-
vous system (CNS), a hallmark of AD [14]. This chronic 
inflammation is primarily driven by the overproduction 
of pro-inflammatory interleukins, such as IL-1β, IL-6, 
and IL-18, which are known to exacerbate neuronal dam-
age and promote the formation of amyloid plaques and 
neurofibrillary tangles [15]. Administration of IL-33 leads 
to a decrease in soluble β-amyloid concentrations and the 
accumulation of amyloid plaques is curbed through the 
enhancement of microglial recruitment and their abil-
ity to ingest β-amyloid [16]. Additionally, IL-6 has been 
implicated in the phosphorylation of tau protein, a criti-
cal event in the formation of neurofibrillary tangles [17]. 
The persistent activation of these interleukin-mediated 
pathways not only contributes to the pathological fea-
tures of AD but also disrupts neuronal communication 

and synaptic function, leading to cognitive decline. More-
over, recent genetic studies have underscored the impor-
tance of interleukin-related genes in AD. Polymorphisms 
in genes encoding interleukins and their receptors have 
been associated with an increased risk of developing AD. 
For instance, variants in the IL-10, IL-6, and IL-1β genes 
have been linked to altered expression levels and activ-
ity, influencing the individual’s susceptibility to neuroin-
flammation and AD progression [15, 18, 19, 20]. These 
genetic associations highlight the potential of interleukin 
signaling pathways as therapeutic targets.

This study aims to investigate the differential expression 
of interleukins and their receptors in AD patients com-
pared to normal individuals. By leveraging the GSE48350 
dataset, we conducted a single-sample Gene Set Enrich-
ment Analysis (ssGSEA) to quantify the expression levels 
of interleukin-related genes. Furthermore, we identified 
differentially expressed interleukin-related genes (DIGs) 
and explored their functional implications through 
enrichment analysis. To pinpoint key interleukin genes 
with potential diagnostic value, we employed LASSO and 
logistic regression models. These key genes were subse-
quently used to construct a predictive nomogram, which 
was validated using the GSE132903 dataset. In addition, 
we performed unsupervised clustering and immune cell 
infiltration analyses to examine the heterogeneity among 
AD patients. Our findings revealed distinct immune 
profiles and pathway activities between the identified 
subgroups, highlighting the complexity of AD’s immuno-
logical landscape.

The study’s significance lies in its potential to uncover 
novel biomarkers for AD diagnosis and to provide 
insights into personalized therapeutic strategies target-
ing interleukin dysregulation. By elucidating the roles 
of interleukins in AD, we aim to contribute to a deeper 
understanding of the disease and to facilitate the devel-
opment of targeted interventions that can mitigate its 
progression.

Methods
Data acquisition and data preprocessing
The dataset utilized for our investigation was obtained 
from the GEO repository (​h​t​t​p​​s​:​/​​/​w​w​w​​.​n​​c​b​i​​.​n​l​​m​.​n​i​​h​.​​g​o​v​/​
g​e​o​/). Our analysis encompassed two cohorts: GSE48350, 
comprising 173 samples from the normal control group 
and 80 samples from the AD group, and GSE132903, 
which included 98 normal control and 97 AD patient 
samples. GSE48350 served as the exploratory dataset, 
while GSE132903 was employed as the validation data-
set. Tables S1 and Table S2 present the demographic 
characteristics of these two datasets. Before conducting 
data analysis, the unprocessed matrix files were extracted 
and standardized with the assistance of the Affy software 
package.

https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/
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Evaluation of the interleukin pathways score in AD
Two gene sets linked to interleukin-related pathways 
(interleukins and interleukin receptors) were retrieved 
from the ImmPort database (http://www.immport.org). 
The ssGSEA algorithm was utilized to compute the inter-
leukin-related pathway scores for individual samples, 
which were presented through box plots. In total, 89 
interleukin pathways-related genes (IGs) were identified 
within these gene sets.

Identification and analysis of differentially regulated 
interleukin-associated genes (DIGs)
Based on the gene expression profiles of the 89 inter-
leukin genes (IGs), the identification of DIGs was per-
formed by comparing the normal and AD groups using 
the limma package (version 3.22.7). Criteria for selection 
were set at an adjusted p-value lower than 0.05 and a|log-
fold change (FC)| greater than 1. The network of protein-
protein interactions (PPI) in the DIGs was constructed by 
leveraging the STRING database ​(​​​h​t​t​p​s​:​/​/​c​n​.​s​t​r​i​n​g​-​d​b​.​o​
r​g​/​​​​​)​, with a confidence score threshold of 0.7 set as the 
criterion. The visualization of the network was accom-
plished using the Cytoscape software tool. We utilized 
clusterProfiler and enrichplot packages for conducting 
KEGG enrichment analysis and GO functional annota-
tion. A significance threshold was defined, wherein any 
adjusted p-value below 0.05 was deemed significant.

LASSO and logistic regression were employed for the 
identification of feature genes
In our study, we utilized LASSO regression analysis to 
pinpoint key genes associated with AD by analyzing the 
expression patterns of DIGs. The glmnet (version 4.1.7) 
software package was employed to carry out the LASSO 
regression using the glmnet() function and 10-fold cross-
validation performed via the cv.glmnet() function to 
determine the optimal penalty parameter. Following this, 
logistic regression analysis was conducted using the lrm() 
function from the rms package (version 6.4.0) to further 
identify crucial DIGs, with default parameters retained 
except for specifying maximum iterations = 200.

Development and validation of a nomogram
In the development of the nomogram, we leveraged the 
lrm() function from the rms package (version 6.4.0) to 
integrate the signature genes identified through logis-
tic regression. Specifically, the nomogram() function 
was employed to construct the nomogram, using the 
results from the logistic regression model as input. The 
lrm() function used these signature genes as predictors, 
with the outcome being AD diagnosis. For the nomo-
gram construction, we included the 8 key signature 
genes identified by logistic regression: IL1R2, IFNLR1, 
IL10RA, IL4R, IL1RL2, IL22RA1, IL5, and IL12A. The 

weights associated with each gene in the nomogram cor-
respond to their respective regression coefficients from 
the logistic model, which reflect the contribution of each 
gene to the total risk prediction. These coefficients were 
converted to points, and the final nomogram was con-
structed by summing the points for each gene to predict 
the probability of AD. The diagnostic performance of 
the nomogram was evaluated by constructing a Receiver 
Operating Characteristic (ROC) curve using the roc() 
function from the pROC package (version 1.18.0). The 
area under the curve (AUC) was calculated to assess the 
model’s discriminatory power. Furthermore, the model’s 
precision was validated using calibration plots and deci-
sion curve analysis (DCA), both of which were performed 
using functions from the rms package. The nomogram 
developed in the training cohort (GSE48350) was exter-
nally validated using the GSE132903 dataset without 
recalibration or re-estimation of coefficients.

Identification of disease subtypes related to interleukins 
in AD
To elucidate the correlation between interleukins and 
AD, we utilized the ConsensusClusterPlus package to 
perform clustering analysis on the expression profiles of 
DIGs. The optimal cluster count, represented by the “k” 
value, was determined from the cumulative distribu-
tion function plot. Additionally, we executed differential 
expression analysis across distinct disease subgroups 
using the limma package and conducted Gene Set 
Enrichment Analysis (GSEA) between these subgroups 
employing the GSEA software.

Examination of the immunological microenvironment
To quantify the abundance of 24 distinct immune cell 
subsets and the activation states of 16 immune response 
pathways, single-sample gene set enrichment analysis 
(ssGSEA) was applied. The gene sets delineating immune 
cell subsets were curated from existing studies [21], 
whereas those pertaining to immune response pathways 
were obtained from the ImmPort repository ​(​​​h​t​t​p​:​/​/​w​
w​w​.​i​m​m​p​o​r​t​.​o​r​g​​​​​) (Table S3). These gene sets served to 
determine the enrichment levels of various immune com-
ponents. A Pearson correlation analysis was performed 
to investigate the connection between the signature 
genes and the quantities of immune cell elements. Rela-
tionships with p-values less than 0.05 were deemed to be 
statistically significant, suggesting a clear link between 
the signature genes and immune characteristics.

Results
Enrichment analysis and differential expression of 
interleukin levels in Alzheimer’s Disease patients
Figure 1A depicts the ssGSEA scores for interleukins and 
interleukin receptor pathways between normal and AD 

http://www.immport.org
https://cn.string-db.org/
https://cn.string-db.org/
http://www.immport.org
http://www.immport.org
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groups in the GSE48350 dataset. The AD group shows a 
significant increase in the ssGSEA scores for both inter-
leukins (p < 0.01) and their receptors (p < 0.001) compared 
to the normal control group. This suggests an overall ele-
vation in the expression levels of interleukins and their 
receptors in AD patients. Figure  1B presents the heat-
map of 23 DIGs between the normal and AD groups. The 
hierarchical clustering shows distinctive expression pat-
terns, with the AD group exhibiting higher expression 
levels (represented in red) of several interleukin-related 
genes compared to the normal group (represented in 
blue). Figure 1C provides a detailed comparison of indi-
vidual interleukin-related gene expressions between nor-
mal and AD groups using violin plots. The plots highlight 
several genes with significant differential expression. 
For example, the expression of IL1R2, IL17RB, IFNLR1, 
IL10RA, IL18, and IL2RG is significantly different in the 

AD group compared to the normal group (p < 0.001). 
Similarly, IL6R, IL13RA1, IL6ST, IL17RA, IL15, and IL7 
also show significant differences in expression (p < 0.01). 
Furthermore, IL20RB, IL18R1, IL22RA1, IL4R, IL20RA, 
IL32, IL5, IL12A, and IL9 display differential expres-
sion (p < 0.05). On the other hand, IL12RB2 and IL1RL2 
exhibit significant decreases in expression in the AD 
group (p < 0.001 and p < 0.005, respectively). These results 
demonstrate that multiple interleukins and their recep-
tors are upregulated in AD patients, indicating their 
potential role in the pathophysiology of AD.

Protein-protein interaction (PPI) network and enrichment 
analysis of differentially expressed interleukin-related 
genes in AD
Figure 2A shows the PPI network constructed for 
the interleukin-related genes that were differentially 

Fig. 1  Differential expression of interleukins and interleukin receptors in normal and AD. (A) Violin plots showing ssGSEA scores for interleukins and in-
terleukin receptors in normal (blue) and AD (red) groups. (B) Heatmap illustrating the hierarchical clustering of gene expression levels for DIGs in normal 
(blue) and AD (red) groups. The expression values for each gene were standardized to z-scores to facilitate comparison across samples. (C) Violin plots of 
gene expression levels (TPM values) for DIGs in normal (blue) and AD (red) group. *p < 0.05, **p < 0.01, ***p < 0.001
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expressed between normal and AD groups. Nodes rep-
resent the interleukin genes, and edges signify the pre-
dicted interactions between these proteins. Extensive 
interconnections can be observed in the network, indi-
cating a complex interaction landscape and suggesting 
potential coordinated roles of these genes in AD patho-
physiology. The results of Fig. 2B show that the differen-
tially expressed interleukin-related genes were enriched 
in various ontology and pathway terms. In the Biological 
Process (BP) category, terms such as cytokine-mediated 
signaling pathway, positive regulation of cytokine pro-
duction, and receptor signaling pathway via JAK-STAT 
were significantly enriched. The Cellular Component 
(CC) category included terms like the external side of 
plasma membrane, plasma membrane signaling recep-
tor complex, and centriolar satellite. Molecular Func-
tion (MF) terms that were enriched included cytokine 
receptor activity, immune receptor activity, and cytokine 
binding. The KEGG Pathways analysis revealed enrich-
ment in pathways such as cytokine-cytokine receptor 
interaction, JAK-STAT signaling pathway, and viral pro-
tein interaction with cytokine and cytokine receptors. 
The enrichment analysis highlights that the differen-
tially expressed interleukin genes are primarily involved 
in immune signaling pathways, especially the JAK-STAT 
pathway and cytokine-mediated signaling, which are 
known to play crucial roles in inflammatory responses. 
The specific enrichment in the plasma membrane-related 
categories suggests that many of these proteins are 

membrane-associated, which aligns with their roles as 
receptors and signaling molecules.

Identification of key interleukin genes in AD and 
nomogram construction using LASSO and Logistic 
regression
Figure 3A displays the LASSO regression result for iden-
tifying key interleukin genes. In this analysis, several 
interleukin genes (IL1R2, IL17RB, IL12RB2, IFNLR1, 
IL10RA, IL6ST, IL4R, IL32, IL6R, IL1RL2, IL22RA1, 
IL20RB, IL5 and IL12A) were identified as key vari-
ables based on their minimal cross-validated error. Sub-
sequently, we conducted a logistic regression analysis 
incorporating these 14 genes, identifying 8 pivotal genes 
(IL1R2, IFNLR1, IL10RA, IL4R, IL1RL2, IL22RA1, IL5, 
and IL12A) that demonstrated statistically significant 
(p-values < 0.05). This indicates their potential role as bio-
markers for AD patients (Table  1). Figure  3B illustrates 
the nomogram constructed using the training dataset 
(GSE48350) based on the 8 key interleukin genes identi-
fied through logistic regression. This nomogram serves 
as the foundational model for predicting AD risk. Each 
variable’s contribution to the total points is depicted, 
facilitating individualized risk assessment based on 
gene expression. Figure 3C shows the ROC curve of the 
training cohort (GSE48350), yielding an AUC of 0.882, 
reflecting the model’s discriminative performance in 
the development phase. Figure  3D presents the calibra-
tion plot, demonstrating the agreement between the 

Fig. 2  PPI network and functional enrichment analysis of differentially expressed interleukin genes in AD. (A) PPI network: Nodes represent differentially 
expressed interleukin genes between normal and AD groups, while edges represent predicted protein-protein interactions. (B) Enrichment analysis: Bar 
plots display significantly enriched terms for the differentially expressed interleukin genes across four categories (BP, CC, MF, and KEGG)
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Table 1  The results of logistic regression analysis
Characteristics Total(N) Univariate analysis Multivariate analysis

Odds Ratio (95% CI) P value Odds Ratio (95% CI) P value
IL1R2 253 0.455 (0.325–0.636) < 0.001 0.560 (0.328–0.957) 0.034
IL17RB 253 0.523 (0.382–0.716) < 0.001 0.761 (0.446–1.296) 0.315
IL12RB2 253 1.873 (1.360–2.580) < 0.001 1.206 (0.780–1.863) 0.400
IFNLR1 253 0.150 (0.082–0.274) < 0.001 0.074 (0.029–0.192) < 0.001
IL10RA 253 0.601 (0.453–0.797) < 0.001 0.563 (0.337–0.940) 0.028
IL6ST 253 0.588 (0.417–0.829) 0.002 0.726 (0.433–1.219) 0.226
IL4R 253 0.687 (0.513–0.920) 0.012 3.494 (1.661–7.351) < 0.001
IL32 253 0.511 (0.326–0.800) 0.003 0.667 (0.329–1.354) 0.262
IL6R 253 0.511 (0.308–0.847) 0.009 2.611 (0.822–8.296) 0.104
IL1RL2 253 27.242 (3.914–189.614) < 0.001 952.583 (25.751–35237.6698) < 0.001
IL22RA1 253 0.039 (0.007–0.215) < 0.001 0.079 (0.010–0.631) 0.017
IL20RB 253 0.074 (0.013–0.414) 0.003 0.092 (0.005–1.543) 0.097
IL5 253 0.140 (0.033–0.599) 0.008 0.023 (0.002–0.277) 0.003
IL12A 253 0.161 (0.037–0.699) 0.015 0.074 (0.007–0.805) 0.032

Fig. 3  Identification of key interleukin genes in AD and construction of a predictive nomogram. (A) The plot of binomial deviance versus log(λ) shows 
the process of selecting key interleukin genes based on the minimum cross-validated error, identifying the most relevant genes for AD prediction. (B) The 
nomogram illustrates how the selected key interleukin genes (IL1R2, IFNLR1, IL10RA, IL4R, IL1RL2, IL22RA1, IL5, and IL12A) contribute to the total score, 
which predicts the probability of AD. (C) The ROC curve displays the performance of the logistic regression model based on the selected genes. (D) The 
calibration curve shows the agreement between predicted probabilities from the nomogram and actual observed outcomes. (E) The DCA compares the 
net benefit of using the nomogram for clinical decision-making across a range of risk thresholds
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predicted probabilities from the nomogram and the 
actual observed probabilities. The bias-corrected line 
(red) closely aligns with the ideal line (gray), indicating 
that the model’s predictions are well-calibrated and reli-
able. Figure 3E depicts the decision curve analysis (DCA) 
for the constructed nomogram. The DCA compares the 
net benefits of the nomogram, considering different risk 
thresholds. The blue line (nomogram) shows a higher 
net benefit compared to the “All” and “None” strategies, 
indicating that the nomogram provides a meaningful 
improvement in decision-making regarding AD risk.

Validation of the established nomogram using the 
GSE132903 dataset
Figure 4A demonstrates the external validation of the 
nomogram (originally developed in Fig.  3B) by apply-
ing it to the independent GSE132903 dataset. The model 
retained the same gene coefficients and scoring system 

without re-training. Figure 4B illustrates the ROC curve 
of the validation cohort (GSE132903), achieving an AUC 
of 0.837, confirming the generalizability of the nomo-
gram. Figure  4C presents the calibration plot for the 
nomogram in the validation cohort, showing the relation-
ship between predicted probabilities and actual observed 
outcomes. The bias-corrected line (red) closely follows 
the ideal line (gray), indicating that the predictions made 
by the nomogram are well-calibrated and accurate. Fig-
ure  4D depicts the DCA for the nomogram, compar-
ing the net benefits across different risk thresholds. The 
blue line (nomogram) has a higher net benefit compared 
to the “All” and “None” strategies, validating the clinical 
utility of the nomogram for decision-making regarding 
AD risk in the independent validation dataset. Overall, 
the validation results confirm that the established nomo-
gram provides robust and accurate predictions of AD in 
an independent cohort.

Fig. 4  Validation of the predictive nomogram for AD using the GSE132903 dataset. (A) A nomogram was constructed based on the GSE132903 dataset 
incorporating key interleukin genes. (B) ROC curve for the validation cohort. (C) Calibration plot. (D) The DCA plot compares the net benefit of using the 
nomogram for clinical decision-making
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Unsupervised clustering analysis of AD patients based on 
interleukin-related differentially expressed genes
Figure 5A illustrates the consensus clustering heatmap 
for AD patients based on interleukin-related differentially 
expressed genes. The heatmap reveals two distinct clus-
ters (C1 and C2) characterized by differing expression 

patterns of these genes. Figure  5B presents the relative 
change in the area under the cumulative distribution 
function (CDF) curve, plotted to determine the optimal 
number of clusters (K). The curve exhibits a peak at K = 2 
(highest relative change), followed by a gradual decline. 
While the absolute reduction in slope diminishes at 

Fig. 5  Unsupervised clustering of AD patients. (A) Consensus clustering heatmap. (B) Relative change in area under CDF curve. (C) Consensus values for 
different cluster numbers. (D) Violin plots comparing the expression levels of (TPM values) interleukin-related genes between clusters C1 (blue) and C2 
(red)
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larger K values, the elbow criterion prioritizes the most 
pronounced inflection point, which corresponds to K = 2. 
Figure 5C shows the consensus values for varying cluster 
numbers (K = 2 to K = 10). The consensus values for K = 2 
exhibit the highest stability and robustness, support-
ing the decision to select two clusters. Figure  5D com-
pares the gene expression levels of interleukin-related 
genes between the two identified clusters (C1 and C2) 
using violin plots. The expression levels of several genes 
show significant differences between the clusters: IL1R2, 
IL17RB, IFNLR1, IL10RA, IL4R, IL18R1, IL32, and ILRG 
are significantly upregulated in cluster C2 compared 
to cluster C1 (p < 0.001, p < 0.01, p < 0.05). In contrast, 
IL20RA is significantly downregulated in cluster C2 
compared to cluster C1 (p < 0.001). These results indi-
cate that AD patients can be successfully stratified into 
two subgroups based on the expression patterns of inter-
leukin-related genes. The significant differences in gene 
expression profiles between clusters C1 and C2 suggest 
potential biological heterogeneity among AD patients. 
Understanding these differences may provide insights 
into distinct pathological mechanisms and could guide 
personalized therapeutic approaches for AD.

Immune cell infiltration and immune-related pathway 
activity in AD subgroups.
Figure 6A shows the ssGSEA scores comparing immune 
cell infiltration between normal and AD groups. The AD 
group exhibits significantly higher infiltration levels of 
several immune cell types, including aDC, CD8 T cells, 
DC, Macrophages, Neutrophils, NK cells, T helper cells, 
Tcm, Tem, Tgd, Th 17 cells, and Treg (p < 0.05, p < 0.01, 
p < 0.001). These findings suggest an enhanced immune 
response in the AD group compared to normal con-
trols. Figure 6B further analyzes the immune cell infiltra-
tion between the two interleukin-related AD subgroups 
(C1 and C2) identified through unsupervised cluster-
ing. Significant differences in immune cell infiltration 
are observed: Subgroup C2 shows higher levels of aDC, 
CD8 T cells, Cytotoxic cells, Neutrophils, Tem, and Treg 
compared to subgroup C1 (p < 0.05, p < 0.01, p < 0.001). 
Figure  6C presents a correlation heatmap showing the 
relationship between key interleukin genes and immune 
cell types, with correlation coefficients (|Cor|) depicted. 
The most significant correlations (|Cor| > 0.5, p < 0.001) 
involve genes such as IL10RA, IL4R, and IL5 with vari-
ous immune cells, underscoring specific gene-cell inter-
actions that may underpin the immune heterogeneity 
observed in AD. Figure  6D illustrates ssGSEA scores 
comparing the activity of immune-related pathways 
between the two AD subgroups (C1 and C2). Several 
pathways show significant differences in activity: cyto-
kine receptors, interleukins receptors, natural killer 
cell cytotoxicity, TCR signaling pathways, TGFb family 

member, TGFb family member receptor, and TNF family 
members receptors pathways exhibit significantly higher 
activity in subgroup C2 (p < 0.05, p < 0.01, p < 0.001). This 
indicates that subgroup C2 is characterized by height-
ened immune pathway activity, which may contribute to 
more pronounced immune responses and inflammation 
compared to subgroup C1. These analyses emphasize the 
differential immune landscapes between AD patients and 
normal controls, as well as among AD subgroups charac-
terized by distinct interleukin gene expression patterns. 
The observed variations in immune cell infiltration and 
pathway activities provide insights into the underlying 
immunological heterogeneity of AD, which could inform 
tailored therapeutic strategies targeting specific immune 
pathways for different patient subgroups.

Differential expression and GSEA of interleukin-related AD 
subgroups
Figure 7A shows a volcano plot illustrating the differ-
entially expressed genes (DEGs) between the two inter-
leukin-related AD subgroups (C1 and C2). Red points 
indicate significantly upregulated genes in cluster C2 
(1,040 genes), while blue points denote significantly 
downregulated genes in cluster C2 (749 genes) (Table 
S4). Figure  7B presents a heatmap of the top 50 DEGs 
between the two AD subgroups, with hierarchical clus-
tering. The heatmap shows a clear separation between 
clusters C1 and C2, with genes upregulated in cluster C2 
(red) and downregulated in cluster C2 (blue). This dis-
tinct clustering of gene expression profiles further cor-
roborates the differences between the two subgroups, 
suggesting underlying molecular heterogeneity. Figure 7C 
depicts the results of GSEA, comparing enriched path-
ways between subgroups C1 and C2. The top enriched 
pathways in cluster C1 include: Tryptophan Metabolism 
(ES = 0.3150, p = 0.0121), Alanine, Aspartate, and Gluta-
mate Metabolism (ES = 0.6179, p = 0.0130), Porphyrin and 
Chlorophyll Metabolism (ES = 0.4802, p = 0.0459), Adi-
pocytokine Signaling Pathways (ES = 0.4716, p = 0.0020), 
and Butanoate Metabolism (ES = 0.5019, p = 0.0338). 
Conversely, some pathways are enriched in cluster C2: 
Acute Myeloid Leukemia (ES=-0.4272, p = 0.0337).

Discussion
AD is a progressive neurodegenerative disorder predomi-
nantly affecting the elderly population [22]. Extensive 
research has demonstrated that the neuropathological 
onset of AD precedes the manifestation of clinical symp-
toms over several decades [23]. As a result, it is essential 
to pinpoint potential biomarkers to detect AD at an early 
stage and to identify promising treatment strategies for 
its control. The dysregulation of interleukins and their 
receptors in AD has been a topic of interest in the field 
of neuroimmunology [24]. Our study confirmed the 
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upregulation of interleukins and their receptors in AD 
patients, which is consistent with previous reports high-
lighting the role of interleukin signaling in AD pathogen-
esis [25–27]. The identification of DIGs further supports 

the notion that immune dysregulation plays a crucial role 
in AD development and progression [28].

Our enrichment analysis revealed that the DIGs 
are involved in immune signaling pathways, empha-
sizing the importance of the immune system in AD 

Fig. 6  Immune cell infiltration and immune-related pathway activity in AD subgroups. (A) Violin plots displaying ssGSEA scores for various immune cell 
types. (B) Violin plots comparing ssGSEA scores for immune cell types between AD subgroups (C1 and C2). (C) Heatmap showing the correlation coef-
ficients (|Cor|) between interleukin genes and immune cell types. (D) Violin plots of ssGSEA scores comparing the activity of immune-related pathways. 
*p < 0.05, **p < 0.01, ***p < 0.001
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pathophysiology. This finding aligns with previous stud-
ies showing the involvement of inflammatory processes 
and immune responses in AD pathogenesis [2930]. Fur-
thermore, the connection between immune signaling 
pathways and AD pathophysiology suggests potential 

therapeutic targets for modulating the immune response 
to mitigate disease progression [31, 32]. This highlights 
the promising role of immunomodulation in AD treat-
ment strategies, paving the way for novel interven-
tions beyond traditional approaches. The predictive 

Fig. 7  Differential expression and GSEA of interleukin-related AD subgroups. (A) The volcano plot illustrates the differentially expressed genes (DEGs) 
between the two AD subgroups (C1 and C2). (B) Heatmap of top 50 DEGs. (C) GSEA plots show the top enriched pathways in cluster C1 (above) and 
cluster C2 (below)
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nomogram based on key interleukin genes provides a 
novel approach to stratifying AD patients based on their 
interleukin gene expression levels. This personalized pre-
dictive model could potentially aid in clinical decision-
making and treatment planning for AD patients.

The identification of distinct AD subgroups with dif-
ferent immune profiles and pathway activities adds a new 
dimension to our understanding of AD heterogeneity. 
Previous studies have shown that AD is a complex and 
multifactorial disease with diverse clinical presentations 
and underlying pathologies [33]. Our study extends these 
findings by highlighting the role of immune-related fac-
tors in shaping the clinical manifestations and progres-
sion of AD. By elucidating the immunological landscape 
of AD and identifying specific immune signatures asso-
ciated with different subgroups, we pave the way for 
personalized classification and management strategies 
for AD patients. Immunological dysregulation has been 
increasingly recognized as a key player in the pathogen-
esis of AD, contributing to neuroinflammation, synaptic 
dysfunction, and neurodegeneration [34]. The presence 
of distinct immune profiles in different AD subgroups 
suggests that immune-mediated mechanisms may under-
lie the heterogeneity observed in clinical phenotypes and 
disease progression. For instance, specific cytokine pro-
files or activation of immune cell subsets may drive dif-
ferent pathogenic processes leading to varying degrees of 
cognitive decline and neurodegeneration in AD patients 
[35–37]. Furthermore, considering immune-related fac-
tors in the classification and management of AD patients 
may have important therapeutic implications. Target-
ing specific immune pathways or modulating immune 
responses based on individual immune profiles could 
lead to more effective and personalized treatment strate-
gies for AD. For example, immunomodulatory therapies 
that target interleukin signaling or immune cell activa-
tion may be more beneficial for AD patients with cer-
tain immune profiles, while other subgroups may benefit 
from different treatment approaches [38, 39].

However, our study still suffers from the following 
limitations: The cross-sectional nature of transcriptomic 
data prevents definitive conclusions about whether the 
identified subgroups represent distinct disease entities 
or different temporal stages of immune activation. Lon-
gitudinal studies tracking subgroup transitions could 
clarify this crucial distinction. While our deconvolution 
algorithms estimate immune infiltration, we lack direct 
histological validation through immunohistochemistry 
or single-cell spatial analysis of brain tissues to confirm 
microglial activation patterns. The predictive model’s 
clinical utility requires prospective validation in ethni-
cally diverse populations with standardized cognitive 
assessments before implementation in precision medi-
cine frameworks.

Conclusion
Overall, our study contributes to the growing body of 
evidence supporting the role of interleukins and immune 
dysregulation in AD. By providing insights into the 
immunological landscape of AD and identifying poten-
tial biomarkers for personalized therapeutic strategies, 
our findings have important implications for the develop-
ment of targeted interventions for AD patients.
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