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Abstract 

Background Parkinson’s disease (PD), a prevalent neurodegenerative disorder in the aging population, poses signifi-
cant challenges in unraveling its pathogenesis and progression. A key area of investigation is the disruption of onco-
logical metabolic networks in PD, where diseased cells display distinct metabolic profiles compared to healthy coun-
terparts. Of particular interest are Purine Metabolism Genes (PMGs), which play a pivotal role in nucleic acid synthesis.

Methods In this study, bioinformatics analyses were employed to identify and validate PMGs associated with PD. 
A set of 20 candidate PMGs underwent differential expression analysis. GSEA and GSVA were conducted to explore 
the biological roles and pathways of these PMGs. Lasso regression and SVM-RFE methods were applied to identify 
hub genes and assess the diagnostic efficacy of the nine PMGs in distinguishing PD. The correlation between these 
hub PMGs and clinical characteristics was also explored. Validation of the expression levels of the nine identified PMGs 
was performed using the GSE6613 and GSE7621 datasets.

Results The study identified nine PMGs related to PD: NME7, PKM, RRM2, POLR3 C, POLA1, PDE6 C, PDE9 A, PDE11 
A, and AMPD1. Biological function analysis highlighted their involvement in processes like neutrophil activation 
and immune response. The diagnostic potential of these nine PMGs in differentiating PD was found to be substantial.

Conclusions This investigation successfully identified nine PMGs associated with PD, providing valuable insights 
into potential novel biomarkers for this condition. These findings contribute to a deeper understanding of PD’s patho-
genesis and may aid in monitoring its progression, offering a new perspective in the study of neurodegenerative 
diseases.

Keywords Parkinson’s disease (PD), Purine Metabolism Genes (PMGs), Biomarker candidates, POLA1, POLR3 C

†Yao Wang and Dongchuan Wu contributed equally this work as the first 
author. 

*Correspondence:
Tiantian Yang
ytt@bucm.edu.cn
Full list of author information is available at the end of the article

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12883-025-04167-8&domain=pdf


Page 2 of 15Wang et al. BMC Neurology          (2025) 25:161 

Introduction
Parkinson’s disease (PD), the second-most common 
neurodegenerative condition after Alzheimer’s disease, 
affects approximately 1.2% of individuals over the age of 
65. This disorder predominantly targets the older popu-
lation, typically manifesting around the age of 60, with 
aging as the primary risk factor [1]. Characterized by a 
profound impairment in motor coordination, PD arises 
from the degeneration of dopaminergic neurons in the 
substantia nigra (SN) [2]. Clinically, it is marked by dis-
tinct symptoms including resting tremors, bradykin-
esia, rigidity, and postural-gait abnormalities [3]. PD 
also encompasses a spectrum of additional motor dys-
functions such as altered gait and posture, difficulties 
in speech and swallowing, and expressive changes [4]. 
Recent advancements have led to the recognition of non-
motor symptoms in PD. These non-motor symptoms 
often have a more pronounced impact on patient qual-
ity of life than the motor symptoms, underscoring the 
critical need for research focusing on their prevention 
[5]. The etiology of PD is multifaceted, with genetic pre-
disposition, environmental factors, aging, and oxidative 
stress all contributing to the degeneration of dopaminer-
gic neurons [6]. This review aims to provide a compre-
hensive understanding of PD, with a particular focus on 
the unresolved complexities of PD-associated inflamma-
tion [7]. There is a pressing need for continued research 
to elucidate the intricate role of immune-inflammatory 
mechanisms in PD pathophysiology. Insights from such 
investigations are essential for the development of accu-
rate diagnostic biomarkers and targeted therapeutic 
strategies [8]. In this context, the early identification of 
PD-specific molecular biomarkers is critical [9]. Such 
biomarkers could enable timely intervention, ideally 
before the onset of motor symptoms, thereby transform-
ing the clinical management and prognosis of PD. This 
strategy holds the potential to shift the therapeutic para-
digm toward early detection and intervention, ultimately 
improving disease outcomes.

The metabolic reprogramming’s results in a distinct 
metabolic phenotype within tumor cells, reshaping 
the immune microenvironment. The immune micro-
environment, characterized by a heterogeneous mix of 
cell types and challenged by poor oxygen and nutrient 
supply, plays a crucial role in cancer progression [10]. 
Recent advancements highlight the significance of non-
tumoral immune infiltration in the TME, with growing 
evidence linking immune response to profound changes 
in tissue metabolism [11]. These include nutrient deple-
tion, increased oxygen consumption, and the produc-
tion of reactive species, which collectively influence 
immune cell functionality and maturation. This under-
standing opens avenues for metabolic interventions to 

augment the efficacy of immunotherapies [12]. Purines, 
essential components of DNA, RNA, and key biomol-
ecules like ATP and NADH, are central to various cel-
lular functions, including energy production, signal 
transduction, and fatty acid biosynthesis [13]. Moreo-
ver, purines significantly influence immune responses 
and host–pathogen interactions [14]. Mammalian 
cells predominantly satisfy their purine requirements 
through the salvage pathway, but in rapidly prolifer-
ating cells, such as tumor cells, an enhanced need for 
purines is met by upregulating de novo synthesis [15]. 
Historically, purine antimetabolites were among the 
first anticancer agents and continue to play a vital role 
in treating various leukemias and non-neoplastic dis-
eases by inhibiting DNA synthesis and cell growth [16]. 
The discovery of purinosomes, intricately linked to the 
cell cycle, offers a novel therapeutic target in purine 
metabolism [17]. While the integration of purine meta-
bolic strategies with immunotherapy shows promise, 
especially in PD management, the role of purine metab-
olism in immunogenicity and immunotherapy remains 
largely unexplored. This study endeavors to bridge this 
knowledge gap, aiming for an in-depth evaluation of 
PMGs in the context of immunotherapy for PD. This 
approach could revolutionize the understanding and 
treatment of PD, paving the way for innovative thera-
peutic strategies.

The PD Initiative, by integrating comprehensive tran-
scriptome sequencing data with detailed clinical anno-
tations, offers a unique and invaluable resource for 
exploring the transcriptional intricacies and molecular 
pathways underlying PD. Bioinformatics analyses of these 
extensive datasets have provided critical insights into 
the complex pathophysiology of PD [18–20]. However, 
a notable gap in the current research lies in the applica-
tion of bioinformatics to investigate the role of PMGs in 
PD. To address this gap, our study leverages PD-related 
GEO datasets to investigate the significance and impact 
of PMGs in PD pathogenesis, as illustrated in Fig. 1.

Materials and methods
Raw Data and Differentially Expressed Genes (DEGs)
We utilized two foundational datasets from the GEO 
series, GSE6613 and GSE7621. GSE6613 was used for 
training, while GSE7621 was reserved for validation. 
Additionally, the MSigDB provided a comprehensive list 
of PMGs (Table S1). mRNA profiles were extracted using 
Perl scripts to match and sort transcriptional data. Fol-
lowing normalization, DEGs among the PMGs were 
identified using criteria: FDR < 0.05 and |log2 FC|≥ 1. 
Pearson’s correlation coefficient was then employed, 
using the corrplot package in R.
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Building a model, immune cell infiltration and functional 
enrichment analysis
To elucidate the biological significance and pathway 
involvement of differentially expressed genes (DEGs), 
we conducted Gene Ontology (GO) and KEGG pathway 
analyses. Using the R platform, we assessed the impact 
of differentially expressed PMGs on biological processes 
(BP), molecular functions (MF), and cellular compo-
nents (CC), providing a detailed functional characteriza-
tion of these genes. Model refinement was accomplished 
through Lasso regression using the glmnet package [21] 

with repeated K-fold cross-validation, enabling the selec-
tion of an optimal penalty parameter to maximize model 
accuracy and predictive strength. To further validate the 
model, we implemented the Support Vector Machine-
Recursive Feature Elimination (SVM-RFE) algorithm via 
the e1071 package of R.4.3 [22], constructing a machine 
learning model with high precision. Cross-validation was 
instrumental in evaluating model performance, mini-
mizing error rates, and enhancing predictive accuracy, 
thereby ensuring the model’s robustness. Key gene anal-
ysis and disease classification were conducted using the 

Fig. 1 Framework. To advance our understanding of PD, we conducted a comprehensive analysis using patient-derived datasets from the GEO 
repository. Our primary cohort included the GSE6613 and GSE7621 datasets, with the GSE7621 dataset employed for validation. By applying 
a rigorous matching strategy for PMGs, we performed differential expression analyses and constructed a prognostic risk model. This approach 
identified a distinct subset of PMGs with prognostic significance in PD, highlighting their potential as candidate biomarkers. To further explore 
the functional roles of these genes, we conducted an extensive array of bioinformatics analyses, including GO, KEGG, and GSEA. These analyses 
were supplemented with data from multiple databases, offering a multidimensional view of the implicated PMGs and their involvement in cellular 
processes, signaling pathways, and gene regulatory networks
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ggplot2 package [23], allowing us to identify and visualize 
critical genes implicated in disease pathogenesis. Addi-
tionally, immune cell composition was analyzed using 
the CIBERSORT algorithm [24], offering comprehensive 
insights into the immune landscape associated with the 
disease and highlighting potential immune regulatory 
mechanisms.

Gene set enrichment and variation analyses and drug‑gene 
interaction insights
To investigate functional dynamics and pathway altera-
tions across diverse samples, we conducted Gene Set 
Enrichment Analysis (GSEA) and Gene Set Variation 
Analysis (GSVA). Leveraging the R platform, we evalu-
ated the influence of differentially expressed PMGs on BP, 
MF, and CC, and signaling pathways, providing detailed 
insights into their roles in disease mechanisms. Given the 
pivotal role of validated biomarkers in shaping therapeu-
tic strategies, accurate drug prediction remains essential.

Construction of an mRNA‑miRNA‑lncRNA Network
Non-coding RNA transcripts play pivotal roles in shap-
ing the genetic regulatory network. miRNAs modulate 
gene expression by promoting mRNA degradation and 
inhibiting translation, while lncRNAs, typically over 
200 nucleotides in length, influence diverse cellular pro-
cesses through chromatin modification, transcriptional 
regulation, and interference mechanisms. Recent stud-
ies underscore the intricate crosstalk between miRNAs 
and lncRNAs, leading to competitive binding interac-
tions with other regulatory molecules. This phenomenon, 
termed the ceRNA network, reveals how lncRNAs regu-
late gene expression by sequestering miRNAs, thereby 
modulating their activity. To investigate these interac-
tions, we curated target gene information from miRTar-
Base and PrognoScan, databases that provide validated 
miRNA-lncRNA-target relationships.

Mendelian randomization analysis
To ensure the independence of exposure and outcome 
variables in our genome-wide association study (GWAS) 
summary data, we conducted an association analysis 
using the TwoSampleMR package in R. We designated 
PMG-related expression as the exposure and PD as the 
outcome to investigate potential causal relationships. 
The analysis comprised three key steps: (1)Instrumental 
Variable (IV) Selection: PMG-related expressions were 
filtered using a significance threshold of P < 5 × 10⁻⁸ to 
identify strongly associated SNPs. (2) Independence 
Configuration: Linkage disequilibrium (LD) between 
SNPs was calculated using the PLINK clustering method, 
excluding SNPs with an LD coefficient  (r2 > 0.001) within 
a 10,000 kb window to ensure SNP independence and 

minimize pleiotropic bias. (3) Statistical Strength Assess-
ment: The robustness of instrumental variables was 
evaluated using the F-statistic (F = β2/SE2), with F < 10 
indicating insufficient strength to mitigate confound-
ing. Following SNP identification, the harmonise_data 
function within TwoSampleMR was employed to align 
allelic directions between exposure and outcome, exclud-
ing incompatible SNPs. Causal inference was performed 
using the inverse variance-weighted (IVW) method, 
which leverages the variance of instrumental variables 
as weights to estimate causal effects, thereby provid-
ing insights into the genetic architecture underlying PD 
susceptibility.

Results
Identification of degs and enrichment analysis of PMGs
Among the 20 examined PMGs, several exhibited sig-
nificant differences in expression levels. Furthermore, 
gene clustering analysis revealed distinct clusters in the 
PD and control groups. Notable PMGs in the PD group 
included AMPD1, PDE1 C, XDH, ADCY10, ENPP1, 
RRM2, ADCY2, while control group PMGs comprised 
NME7, PKM, IMPDH2, POLR2L, ADPRM, ENTPD4 
(Fig.  2a). Correlation analysis was conducted among 
these PMGs (Fig.  2b) (Table  S2). The MF category pri-
marily involved phosphoric magnesium ion binding 
(GO:0000287), lyase activity (GO:0016829), nucleotidyl-
transferase activity (GO:0016779). The CC category was 
mainly associated with neuronal cell body (GO:0043025), 
vesicle lumen (GO:0031983), cytoplasmic vesicle lumen 
(GO:0060205). The BP category included neutrophil acti-
vation (GO:0042119), neutrophil mediated immunity 
(GO:0002446), neutrophil activation involved in immune 
response (GO:0002283). Pathway enrichment analysis 
revealed that DEGs in PD are predominantly involved 
in purine metabolism (hsa00230), pyrimidine metabo-
lism (hsa00240), and drug metabolism – other enzymes 
(hsa00983), highlighting their potential roles in PD patho-
genesis. Purine metabolism is central to ATP and GTP 
production, essential for maintaining neuronal energy 
homeostasis and neurotransmission. Disruption of this 
pathway may impair mitochondrial function, exacerbate 
oxidative stress, and contribute to dopaminergic neuron 
degeneration in PD. Pyrimidine metabolism is crucial 
for nucleotide biosynthesis and RNA processing. Dys-
regulation of this pathway could compromise neuronal 
repair mechanisms and synaptic plasticity, thereby accel-
erating neurodegeneration. Alterations in drug metabo-
lism pathways may influence the pharmacokinetics and 
efficacy of PD therapeutics. Variations in drug-metab-
olizing enzyme activity could lead to differential treat-
ment responses and reduced therapeutic effectiveness. 
These findings suggest that metabolic reprogramming 
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Fig. 2 DEGs and Enrichment Analysis. a Analysis of difference. b Analysis of correlation. c: GO. (d): KEGG. Bubble graph for GO enrichment (the 
bigger bubble means the more genes enriched, and the increasing depth of red means the differences were more obvious; q-value: the adjusted 
p-value); The GO circle shows the scatter map of the logFC of the specified gene. Barplot graph for KEGG pathways (the longer bar means the more 
genes enriched, and the increasing depth of red means the differences were more obvious); The KEGG circle shows the scatter map of the logFC 
of the specified gene. The higher the Z-score value indicated, the higher expression of the enriched pathway
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in PD involves coordinated dysregulation of nucleotide 
metabolism and drug processing, which may collectively 
exacerbate disease progression and treatment resistance. 
Further investigation into these pathways could uncover 
novel therapeutic targets and improve patient outcomes 
(Fig. 2c-d and Table S3a-b).

Model construction
We constructed a gene signature through LASSO and 
Cox regression analysis, selecting the optimal penalty 
value to maximize predictive performance (Fig.  3a–b). 
To validate the model’s precision and reliability, we devel-
oped a machine learning framework using SVM-RFE, 
which achieved a notable accuracy of 0.769 with a low 
error rate of 0.231 (Fig.  3c–d). Moreover, the overlap 
of the nine PMGs identified through both LASSO and 
SVM-RFE demonstrated significant concordance, rein-
forcing the robustness of the selected signature (Fig. 3e). 
Performance evaluation of the model for the nine hub 
genes revealed consistently high predictive accuracy, 
as indicated by the area under the curve (AUC) values: 
NME7 (0.664), PKM (0.640), RRM2 (0.647), POLR3 C 
(0.662), POLA1 (0.663), PDE6 C (0.630), PDE9 A (0.663), 
PDE11 A (0.639), and AMPD1 (0.632) (Fig. 3f ). Notably, 
the predictive strength of the model was further cor-
roborated by an AUC of 0.912 (95% confidence interval 
(CI): 0.840–0.968) in the independent validation data-
set GSE7621, underscoring the model’s high accuracy 
and generalizability (Fig. 3g) (Table 1 and S4). Regarding 
the overall model performance, the AUC value of 0.769 

reflects the model’s robust predictive capacity. While 
this value may be perceived as modest, it is essential to 
account for the inherent variability introduced by indi-
vidual genetic differences, which may partially constrain 
the maximum achievable accuracy.

GSEA and GSVA
In terms of GO analysis, POLA1 was found to be asso-
ciated with CC photoreceptor outer segment membrane, 
BP regulation of transposition, BP steroid catabolic pro-
cess. On the other hand, POLR3 C was primarily involved 
in the BP cellular response to antibiotic, CC fascia adhe-
rens, BP regulation of skeletal muscle cell differentiation 

Fig. 3 The development of the PMGs signature. a Regression of LASSO. b Cross-validation. c‑d Accuracy and error. e Venn. f‑g AUC of hub gene 
and train group. Regarding the overall model performance, the AUC value of 0.769 reflects the model’s robust predictive capacity

Table 1 The characteristics of model

Label LASSO SVM‑RFE

Sensitivity 0.416667 0.500000

Specificity 0.800000 1.000000

Pos Pred Value 0.555556 1.000000

Neg Pred Value 0.695652 0.769231

Precision 0.555556 1.000000

Recall 0.416667 0.500000

F1 0.476190 0.666667

Prevalence 0.375000 0.375000

Detection Rate 0.156250 0.187500

Detection Prevalence 0.281250 0.187500

Balanced Accuracy 0.608333 0.750000
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(Fig.  4a). In KEGG analysis, POLA1 was mainly associ-
ated with KEGG cytokine cytokine receptor interaction, 
KEGG gnrh signaling pathway, KEGG proximal tubule 
bicarbonate reclamation, while POLR3 C was involved 
in KEGG renin angiotensin system, KEGG base excision 
repair, KEGG glycosaminoglycan biosynthesis heparan 
sulfate (Fig.  4b) (Table  S5). In the GO analysis, POLA1 
was primarily associated with BP regulation of response 
to drug, BP negative regulation of cell chemotaxis to 
fibroblast growth factor, CC egg coat, BP transposition 
rna mediated, CC fancm mhf complex, BP threonine 
catabolic process, BP meiotic dna double strand break 
formation, MF glycine n acyltransferase activity. POLR3 
C was mainly involved in the BP threonine catabolic 
process, BP rna 3 uridylation, MF protein disaggregase 
activity, CC fhf complex, BP sperm mitochondrial sheath 
assembly, MF lysophosphatidic acid phosphatase activ-
ity, MF udp xylosyltransferase activity, CC iga immuno-
globulin complex, BP phosphagen metabolic process, BP 
negative regulation of myoblast proliferation (Fig. 4c). In 
terms of KEGG analysis, POLA1 was mainly associated 
with asthma, steroid biosynthesis, non homologous end 
joining, nitrogen metabolism, ether lipid metabolism, 
alpha linolenic acid metabolism, linoleic acid metabo-
lism, proximal tubule bicarbonate reclamation. POLR3 C 
was involved in glycosaminoglycan biosynthesis heparan 
sulfate, glycosaminoglycan biosynthesis keratan sulfate, 
asthma, steroid biosynthesis, dorso ventral axis forma-
tion, folate biosynthesis (Fig. 4d).

Analysis of immune cells
This section of the study delves into the intricate role of 
the immune microenvironment in the onset and progres-
sion of PD. Recognizing the significance of immune cell 
dynamics, a detailed analysis was conducted to eluci-
date their expression patterns and interactions in PD. To 
visually represent these patterns, a vioplot was created, 
which effectively highlighted the differential expression 
of various immune cells between control and PD groups. 
Notably, a vioplot was created to display the expression 
patterns of T cells CD4 memory activated, T cells folli-
cular helper, T cells gamma delta, Dendritic cells resting, 
which were highly expressed in the control group. While, 
T cells regulatory (Tregs), Macrophages M0, Mast cells 
resting, Mast cells activated, Neutrophils. This elevated 
expression in the PD group provides critical insights into 
the immune response mechanisms that might be acti-
vated or altered in the context of PD. Further adding to 
this immunological landscape, a comprehensive cor-
relation analysis was conducted. This analysis aimed to 
unravel the intricate relationships between the identified 
genes and various immune cells. Such insights are pivotal 
for understanding how genetic factors might influence or 

be influenced by the immune microenvironment in PD. 
The findings from these analyses, as illustrated in Fig. 5a-
b, shed light on the complex interplay between immune 
cells and genetic factors in PD.

miRNA‑lncRNA shared genes network
A total of 143 miRNAs and 190 lncRNAs associated with 
PD were identified from three databases (Table  S6a-b). 
The network consisted of 157 lncRNAs, 131 miRNAs, 
and some common genes, including the 6 hub genes 
(PDE11 A, POLA1, PDE9 A, RRM2, NME7, PDE6 C) 
(Fig. 6).

Model and hub genes external validation
To verify the reliability of our results. We supplemented 
the expression profile of these genes in other machine 
learning methods. These methods include. RF, SVM, 
XGB, and GLM. RF is an ensemble learning method that 
builds multiple decision trees and combines their out-
puts to enhance predictive accuracy and control over-
fitting. By aggregating the results of numerous decision 
trees, RF improves model stability and reduces variance. 
SVM is a supervised learning algorithm that identifies 
the hyperplane that best separates different classes in a 
high-dimensional space. It is particularly effective in han-
dling complex, non-linear relationships through the use 
of kernel functions. XGB is a powerful gradient-boosting 
algorithm that refines prediction accuracy by sequentially 
correcting the errors of preceding models. It incorporates 
regularization to prevent overfitting and improve gen-
eralization. GLM extends linear regression by allowing 
for different response distributions and link functions, 
making it suitable for modeling complex relationships in 
non-normally distributed data. The boxplots illustrated 
the residual expression patterns of the identified genes 
in PD (Fig. 7a–b). Notable differences were observed in 
the proportions of the four predictive models (Fig.  7c). 
The diagnostic performance of PMGs in distinguishing 
PD from control samples demonstrated a high predictive 
value, with the AUC values as follows: RF: 0.967; SVM: 
0.919; XGB: 0.943; GLM: 0.933 (Fig.  7d). To enhance 
the confidence and prediction accuracy of the model, 
GSE7621 dataset was used for validation. The GSE7621 
analysis further confirming their potential relevance to 
PD (Fig. 7f ).

Mendelian randomization analysis
In examining the direct linkage between the PMGs 
(POLA1 and POLR3 C) and PD incidence, a forest 
plot was utilized for visual illustration, revealing a gen-
eral symmetry in the data. Through sensitivity analy-
sis employing the"leave-one-out"technique, it was 
determined that the omission of any individual SNP had 
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Fig. 4 Expression of Immune cells. a Expression of immune cells in different clusters. b Correlation between PMGs and immune cells
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Fig. 5 miRNAs-LncRNAsNetwork



Page 10 of 15Wang et al. BMC Neurology          (2025) 25:161 

a minimal effect on the results of the inverse variance-
weighted (IVW) analysis, indicating that the remaining 
SNPs closely mirrored the overall dataset’s findings. To 
further authenticate our outcomes, MR-Egger regression 

analysis was conducted, bolstering the integrity and reli-
ability of our results and the chosen analytical framework 
(Fig. 8a-b).

Fig. 6 Model verification. a‑b Residual expression patterns. c Model expression patterns (d) AUC of model. e AUC of test group. f Nine hub genes 
were validated
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Discussions
PD, a common neurodegenerative disorder, manifests 
classic motor symptoms such as tremor, akinesia, and 
bradykinesia, alongside non-motor symptoms like con-
stipation, sleep disturbances, and cognitive deficits 
[25]. Pathologically characterized by the accumulation 
of α-synuclein aggregates forming Lewy bodies and the 
degeneration of dopaminergic neurons in the substan-
tia nigra pars compacta (SNpc) [26], PD’s incidence 
increases with age [27]. However, its neurodegenerative 

pathogenesis is only partially understood, attributed to 
factors including genetic predispositions, oxidative stress, 
immune dysregulation, mitochondrial dysfunction, and 
lipid homeostasis disruption [28]. Recent research has 
focused on the modulation of programmed cell death 
pathways in tumor biology as a promising strategy for PD 
therapeutics [29]. This shift has brought metabolic mark-
ers, particularly those related to cysteine and nucleotide 
metabolism, and oncometabolites like 2-hydroxyglutar-
ate, into the spotlight for both diagnostic and therapeutic 

Fig. 7 Model verification. (a-b) Residual expression patterns. c Model expression patterns (d) AUC of model. e AUC of test group. f Nine hub genes 
were validated

Fig. 8 Mendelian Randomization Analysis. a POLA1. b POLR3 C
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purposes. Consequently, early diagnosis and precise PD 
identification are paramount [30]. In this context, the 
regulation of gene expression is crucial. Purine, a key 
metabolic component involved in various cell signaling 
processes, and its metabolism regulators, play a signifi-
cant role in tumor cell proliferation and treatment resist-
ance [31]. Disruptions in purine nucleotide metabolism, 
affecting gene and protein expression, can enhance cellu-
lar malignancy, invasiveness, and metastasis [32]. While 
recent research has identified several risk markers in 
various diseases, their practical application is limited by 
the absence of comprehensive reviews and large-scale 
replication. Most studies to date have concentrated on 
the effects of single purine metabolism regulators in 
cancer [33]. The collective impact of multiple purine 
metabolism-related genes in other diseases, including 
PD, remains underexplored [34]. As our understanding 
of tumor biology deepens, research is increasingly focus-
ing on non-tumoral aspects. Investigating the diverse 
purine metabolic patterns in PD could illuminate the role 
of purine metabolism in PD’s progression, offering new 
potential targets for therapeutic intervention.

In our study, we identified a set of 20 DEGs intricately 
linked with PMGs in PD. Utilizing a robust method-
ology that integrates DEG analysis, Lasso regression, 
and SVM-RFE, we pinpointed nine key PMGs: NME7, 
PKM, RRM2, POLR3 C, POLA1, PDE6 C, PDE9 A, 
PDE11 A, and AMPD1. These hub genes demonstrated 
significant diagnostic potential for PD, a finding sup-
ported by external dataset validation, highlighting their 
pivotal role in the disease’s pathogenesis. The identi-
fication of these PMGs not only deepens our under-
standing of PD pathogenesis but also holds tangible 
clinical relevance. Purine metabolism plays a crucial 
role in neuroinflammation, mitochondrial function, 
and oxidative stress, all of which are central to PD’s 
neurodegenerative process. Elevated expression of 
RRM2 and PKM may reflect heightened nucleotide 
biosynthesis and altered glycolytic activity, consistent 
with increased cellular stress and metabolic dysregu-
lation observed in PD [35]. Conversely, dysregulation 
of phosphodiesterase genes (PDE6 C, PDE9 A, and 
PDE11 A) implicates impaired cyclic nucleotide signal-
ing, potentially disrupting synaptic plasticity and neu-
rotransmitter homeostasis—pathological hallmarks of 
PD [36]. Notably, the downregulation of AMPD1 sug-
gests compromised purine salvage, which could exacer-
bate cellular energy deficits and contribute to neuronal 
vulnerability. From a diagnostic perspective, the nine 
PMGs demonstrate substantial potential as biomark-
ers for early PD detection [10]. Their inclusion in a 
composite predictive model could enhance diagnostic 
accuracy, particularly in distinguishing PD from other 

neurodegenerative conditions with overlapping clinical 
features. Moreover, these findings provide a foundation 
for targeted therapeutic strategies, such as modulat-
ing purine metabolism and cyclic nucleotide signaling, 
which may mitigate disease progression. Further inves-
tigation into the mechanistic underpinnings of these 
PMGs could facilitate the development of precision 
medicine approaches, ultimately improving patient out-
comes in PD. However, our findings also underscore a 
notable gap in understanding the interactions between 
these genes and specific transcription factors within the 
PMGs framework.

A comprehensive literature review identified POLA1 
and POLR3 C as pivotal regulators in the complex 
interplay between PD and PMGs. Further investigation 
into their biological roles revealed their involvement in 
metabolic pathways linked to neutrophil activation and 
immune response. This suggests that PMGs may exert 
broad regulatory effects on diverse biological processes, 
particularly those influencing immune-related path-
ways. Such regulatory impact could significantly shape 
the pathophysiological progression of PD, positioning 
these genes as potential targets for therapeutic interven-
tion. Purine metabolism, a cornerstone in maintaining 
cellular energy homeostasis and supporting cell prolif-
eration, has been increasingly recognized for its critical 
role in both oncogenesis and metabolic disorders. Cen-
tral to this metabolic axis is POLA1, which encodes the 
catalytic subunit of DNA polymerase α, a key enzyme 
responsible for initiating DNA replication in concert with 
the Primase complex [37]. While POLA1 has tradition-
ally been considered essential for cellular viability, recent 
evidence indicates that its partial deficiency is linked to at 
least two distinct disorders [38]. The first identified syn-
drome, X-linked reticulate pigmentary disorder (XLPDR, 
MIM #301,220), is characterized by distinctive skin 
hyperpigmentation, systemic sterile inflammation, recur-
rent infections, and unique craniofacial features [39]. 
Moreover, the integrity of epigenetic regulation during 
DNA replication—specifically the recycling of parental 
histones and the deposition of new histones—is tightly 
orchestrated by a complex network of histone chaper-
ones, remodelers, and binding proteins [40]. Disruption 
of this finely tuned process can precipitate genomic insta-
bility and altered gene expression patterns, underscoring 
its relevance in both developmental and pathological 
contexts. In oncological research, Li et al. [41]. identified 
POLR3 C and KPNA2 as neoantigens associated with 
poor prognosis in liver hepatocellular carcinoma (LIHC). 
These neoantigens are linked to heightened infiltration 
of antigen-presenting cells, implicating them in tumor 
immune evasion and progression. This highlights the 
potential dual role of POLR3 C in immune modulation 
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and oncogenesis, reinforcing the need for further investi-
gation into its mechanistic underpinnings and therapeu-
tic potential.

Recent advances in molecular genetics have uncov-
ered a complex and tissue-specific involvement of RNA 
polymerase (Pol) III, traditionally known for its role in 
transcribing small untranslated RNAs vital for RNA mat-
uration and translation, in various inherited diseases [42]. 
This paradigm shift from an anticipated generalized cel-
lular dysfunction reveals a more intricate involvement of 
Pol III in human diseases [41]. Notably, mutations in the 
POLR3 A, POLR3 C, POLR3E, and POLR3 F subunits 
are now linked with heightened susceptibility to varicella 
zoster virus-induced encephalitis and pneumonitis [43]. 
Furthermore, an expanding array of mutations in POLR3 
A, POLR3B, POLR1 C, and POLR3 K subunits is associ-
ated with a range of neurodegenerative diseases, includ-
ing notably hypomyelinating leukodystrophy. Additional 
rare disorders have been traced back to mutations in 
POLR3H, POLR3GL, and the BRF1 component of the 
TFIIIB transcription initiation factor [44]. Although 
the correlation between these genetic variations and 
the manifestation of diseases is clear, the exact molecu-
lar mechanisms underlying their pathogenesis remain 
a subject of ongoing investigation. Our analysis of the 
GSE7621 dataset suggests that purine-related features 
could serve as potential prognostic markers in PD, indi-
cating a nascent yet promising area of genomic research. 
The identification of POLA1 and POLR3 C as potential 
molecular mediators of PD pathogenesis underscores 
their diagnostic and therapeutic relevance. Elevated or 
suppressed expression of these genes may serve as early 
biomarkers for PD, aiding in differential diagnosis and 
risk stratification. Furthermore, targeting the DNA rep-
lication and RNA transcription pathways modulated by 
these genes could open novel therapeutic avenues. For 
instance, pharmacological modulation of POLA1 activity 
might restore genomic integrity and enhance neuronal 
resilience, while interventions targeting POLR3 C-medi-
ated transcriptional dysregulation could mitigate protein 
aggregation and cellular stress in PD.

The investigation into the intersection of the immune 
system and PD is at the cutting edge of neuroscientific 
research, providing critical insights into the complex 
etiology of this neurodegenerative disease [45]. PD, clas-
sically characterized by the loss of dopaminergic neu-
rons in the substantia nigra and the accumulation of 
α-synuclein, is increasingly being examined through 
the prism of immune dysregulation, a perspective 
informed by advances in neuroimmunology [18]. This 
rapidly evolving field has uncovered a complex interac-
tion between innate and adaptive immune responses 
and PD pathogenesis [46]. A key finding is the role of 

chronic neuroinflammation, characterized by micro-
glial activation and peripheral immune cell infiltration, 
in the pathology of PD [47]. This inflammatory milieu is 
thought to exacerbate neuronal damage and hasten dis-
ease progression [48]. Additionally, α-synuclein aggre-
gates, central to PD pathology, are believed to instigate 
immune responses, thereby amplifying neuroinflamma-
tion and contributing to neuronal degradation [49]. The 
role of the immune system in PD extends beyond neuro-
inflammation. Immunological factors, including cytokine 
profiles and the presence of autoantibodies, have been 
implicated in both the initiation and progression of PD 
[50]. In this research, CD4 memory-activated T cells, fol-
licular helper T cells, gamma delta T cells, and resting 
dendritic cells were significantly enriched in the control 
group, suggesting a preserved immune surveillance and 
regulatory balance under physiological conditions. In 
contrast, the disease group exhibited heightened infil-
tration of regulatory T cells (Tregs), M0 macrophages, 
resting mast cells, activated mast cells, and neutrophils, 
reflecting a shift toward an immunosuppressive and pro-
inflammatory microenvironment. The observed immune 
cell profile underscores the immunopathological shifts 
associated with disease progression. Elevated levels of 
Tregs and M0 macrophages suggest an immune eva-
sion mechanism, where immunosuppressive signals may 
dampen anti-inflammatory responses, fostering a per-
missive environment for disease progression. Increased 
infiltration of mast cells and neutrophils highlights a 
heightened inflammatory state, which may exacerbate 
tissue damage and neuroinflammation. The depletion of 
CD4 memory-activated T cells, follicular helper T cells, 
and gamma delta T cells in the disease group points to 
impaired adaptive immune responses, potentially com-
promising immune surveillance and pathogen clearance. 
From a diagnostic perspective, these findings suggest 
that profiling immune cell populations could serve as 
a valuable biomarker strategy for early disease detec-
tion and monitoring. Therapeutically, modulating the 
immune landscape—such as enhancing T cell activa-
tion while suppressing the pro-inflammatory activity of 
mast cells and neutrophils—could represent a targeted 
approach to restoring immune balance and mitigating 
disease progression. These insights provide a foundation 
for developing immunomodulatory therapies aimed at 
recalibrating the immune microenvironment in disease 
contexts.

The recent surge of interest in the relationship between 
PD and metabolic processes represents a significant shift 
in modern medical research. With the emergence of 
advanced bioinformatics, there has been a groundbreak-
ing expansion in our understanding of the molecular 
complexities of PD and its related pathologies [51–53]. 
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This collective research effort is crucial in enhancing our 
understanding of the molecular mechanisms that under-
lie PD and its subsequent manifestations. Our study spe-
cifically addresses an important gap in the field, focusing 
on PMGs within the context of PD. Leveraging extensive 
datasets from the GEO (GSE6613 and GSE7621), we 
employed sophisticated analytical tools, including GO, 
KEGG, and GSEA. These methods have been pivotal 
in constructing a comprehensive predictive model that 
sheds light on the complex role of PMGs in PD patho-
genesis. While our research establishes a fundamental 
theoretical framework, it also marks a stepping stone for 
future investigations into metabolic dysregulation in PD 
and the potential for therapeutic interventions targeting 
these disturbances. However, it is important to recognize 
that our study, despite its innovative approach, highlights 
the need for further empirical research to validate the 
primary mechanisms underlying PD. This crucial valida-
tion process should be pursued through extensive in vivo 
and in  vitro studies, which are essential for deepening 
our understanding of PD and guiding the development of 
effective treatments.

Conclusions
In the complex pathobiology of PD, characterized by a 
multifaceted network of targets, pathways, signaling cas-
cades, and regulatory mechanisms, PMGs emerge as piv-
otal players. Genes such as NME7, PKM, RRM2, POLR3 
C, POLA1, PDE6 C, PDE9 A, PDE11 A, and AMPD1 are 
integral to the disease’s molecular framework, orches-
trating key metabolic and signaling processes. Among 
them, POLA1 and POLR3 C are particularly significant, 
exerting profound influence on metabolic regulation and 
cellular homeostasis in PD.
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