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Abstract
Purpose This study aims to evaluate the survival and mortality rates of stroke patients after receiving enteral 
nutrition, and to explore factors influencing long-term survival. With an aging society, nutritional management of 
stroke patients has become a focus of clinical attention.

Methods This study is based on the MIMIC-IV database, which contains patient data from healthcare institutions in 
the United States. We included 81 stroke patients who received enteral nutrition, encompassing various subtypes 
of stroke, specifically subarachnoid hemorrhage, cerebral infarction, and intracerebral hemorrhage. The exposure 
variable was the type of enteral nutrition, while the outcome variables were survival rates at 30 days, 1 year, and 3 
years. Covariates included age, sex, Charlson Comorbidity Index, and minimum blood glucose levels. We employed 
Kaplan-Meier survival analysis and machine learning models to assess survival rates and their influencing factors.

Results Results showed a 30-day survival rate of 66.67%, indicating 27 patient deaths within the initial 30 days. 
The 1-year survival rate decreased to 45.68%, with a cumulative death count of 44 during the follow-up period. The 
3-year survival rate was 43.21%, with a total of 46 deaths. Kaplan-Meier survival analysis indicated that low-risk group 
patients had significantly higher survival rates than the high-risk group (p = 0.0229), with higher survival probability 
in the first 600 days, while the high-risk group showed a significant decline at 400 days. Machine learning model 
evaluation showed that the XGBoost model had a C-index of 0.80 in predicting survival time, with the Charlson 
Comorbidity Index being the most important predictor (F score = 12.0). Additionally, factors such as lowest blood 
glucose, age, and hospital mortality flag significantly influenced survival time.

Conclusion This study highlights the role of early intervention and nutritional management in improving stroke 
patient outcomes. Our findings suggest that the Charlson Comorbidity Index, age, and in-hospital mortality markers 
are major predictors of post-stroke survival. These findings underscore the necessity for personalised nutritional 
strategies, and they call for validation through prospective multicentre studies.
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Introduction
Stroke is one of the leading causes of death and disability 
worldwide, placing a significant burden on public health 
and healthcare systems. According to the Global Burden 
of Disease Study, there were approximately 12.8  million 
new stroke cases globally in 2019, resulting in around 
6.2  million deaths [1]. In China, the situation is equally 
severe. A study by Wang Wei et al. reported that in 2018, 
the age-standardized incidence rate of stroke in China 
was 246.8 per 100,000, with a mortality rate of 149.5 
per 100,000 [2]. Regarding stroke patient survival rates, 
a large-scale study based on the China National Stroke 
Registry reported that the 30-day, 1-year, and 3-year 
survival rates for ischemic stroke patients were 94.0%, 
81.7%, and 71.2%, respectively, while for hemorrhagic 
stroke patients, the corresponding survival rates were 
81.9%, 65.1%, and 57.5% [3]. These statistics highlight the 
urgency of improving stroke patient outcomes.

Enteral nutrition is an essential means of providing 
nutritional support for patients who are unable to eat 
orally, playing a critical role in the treatment of stroke 
patients. It involves delivering nutrient solutions directly 
to the gastrointestinal tract via a nasogastric or gastros-
tomy tube and can be categorized into standard and spe-
cialized formulas [4]. Standard formulas typically contain 
balanced macronutrients and micronutrients, while 
specialized formulas are tailored to specific diseases or 
metabolic states, such as those enriched with omega-3 
fatty acids or glutamine [5]. Early and appropriate enteral 
nutrition not only improves patients’ nutritional status 
but also promotes gastrointestinal function recovery, 
reduces complications, and shortens hospital stays [6]. 
Research suggests that enteral nutrition may reduce the 
risk of infections and improve neurological recovery in 
stroke patients [7]. However, there is still debate within 
the academic community regarding the long-term effects 
of different types of enteral nutrition on stroke patient 
outcomes. A meta-analysis indicated that low-dose n-3 
PUFAs could reduce total cholesterol and triglycer-
ide levels, while also lowering cerebrovascular disease-
related mortality [8], but other studies have found no 
significant differences between standard and specialized 
formulas in improving patient outcomes [9].

Given the limitations and inconsistencies in existing 
evidence, further investigation is necessary to explore 
the relationship between enteral nutrition and stroke 
patient outcomes. Most current studies focus on short-
term outcomes and in-hospital complications, with a 
lack of systematic assessment of long-term survival rates. 
Furthermore, many studies have small sample sizes, mak-
ing it difficult to conduct subgroup analyses and explore 

potential interactions. Therefore, utilizing large medi-
cal databases for retrospective analysis, combined with 
advanced statistical methods and machine learning tech-
niques, may offer new perspectives in addressing these 
issues.

This study aims to assess the impact of standard and 
specialized enteral nutrition on the 30-day, 1-year, and 
3-year survival and mortality rates of 81 stroke patients 
using the MIMIC-IV intensive care database through 
a retrospective cohort study. This study design has sev-
eral advantages: first, the MIMIC-IV database contains 
detailed clinical information and long-term follow-up 
data, providing a more comprehensive prognosis assess-
ment; second, the application of machine learning mod-
els allows us to explore the complex effects of multiple 
factors on prognosis, offering new ideas for personalized 
prediction; finally, the retrospective study design enables 
the acquisition of long-term outcome data in a relatively 
short period, providing timely references for clinical 
decision-making.

This study follows the STROBE (Strengthening the 
Reporting of Observational Studies in Epidemiology) 
guidelines [10] and aims to provide high-quality evidence 
for the nutritional management of stroke patients. We 
hope that this study will not only fill the gaps in current 
research but also offer references for developing per-
sonalized nutrition plans and improving long-term out-
comes for patients. Moreover, the application of machine 
learning models may open new pathways for predicting 
stroke patient outcomes, promoting the development 
of precision medicine in this field. Ultimately, we hope 
the results of this study will contribute to advancements 
in the field of nutritional support for stroke patients, 
improving patient quality of life and reducing the burden 
of the disease.

Methods
Data source
This study is based on data from the MIMIC-IV database, 
which contains records of patients treated in the inten-
sive care units (ICUs) at Beth Israel Deaconess Medical 
Center (BIDMC) in Boston, USA, from 2008 to 2019 [11]. 
This study is a retrospective case-control study. The study 
included 81 patients with stroke or subarachnoid hem-
orrhage (SAH), all of whom received enteral nutrition 
during their hospital stay. The MIMIC database provides 
detailed clinical data, including patient demographics, 
medical history, laboratory tests, and treatment informa-
tion. The enteral nutrition used in this study is divided 
into two types: standard nutrition and specialized nutri-
tion. Standard nutrition includes general nutritional 
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support formulas designed to meet the basic nutritional 
needs of most patients, while specialized nutrition 
includes formulas tailored for specific diseases and high-
calorie, high-protein formulas to meet the clinical needs 
of particular patients. Enteral nutrition was initiated 
within 48 h of patient admission to ensure timely fulfill-
ment of the patients’ nutritional requirements.

Inclusion and exclusion criteria
Inclusion criteria

1. Adult patients aged ≥ 18 years.
2. Clinically diagnosed with stroke (including 

ischemic and hemorrhagic stroke) or subarachnoid 
hemorrhage (SAH).

3. Received enteral nutrition, with relevant nutritional 
information recorded.

4. ICU stay of ≥ 24 h to ensure sufficient time for 
treatment and monitoring.

5. Complete mortality outcome data, including 30-day, 
1-year, and 3-year mortality.

Exclusion criteria

1. Patients with missing or incomplete key clinical data.
2. Patients who did not receive enteral nutrition or for 

whom the nutritional method was unclear.
3. Patients who died or were discharged within 24 h of 

admission.

Study variables and feature selection
To assess the impact of enteral nutrition on the prognosis 
of stroke and subarachnoid hemorrhage patients, several 
clinical variables and laboratory indicators were selected. 
All laboratory data and vital signs are based on the first 
test results obtained within 24  h of patient admission. 
These variables encompass the patient’s baseline char-
acteristics, severity of illness, and metabolic indicators 
to build a comprehensive predictive model. The selected 
variables include:

Demographic characteristics

1. Age.
2. Gender.
3. Categorized Race.

Medical history and scores

1. Charlson Comorbidity Index.
2. Sequential Organ Failure Assessment (SOFA) score: 

reflecting organ dysfunction severity.
3. AIDS score: an ICU-specific score assessing immune 

function.

Vital signs

1. Heart rate: minimum, maximum, and mean.
2. Blood pressure (systolic, diastolic, and mean arterial 

pressure): minimum, maximum, and mean.
3. Respiratory rate, temperature, oxygen saturation 

(SpO2): minimum, maximum, and mean.

Laboratory results

1. Hemoglobin, platelets, white blood cells, anion gap, 
bicarbonate, blood urea nitrogen (BUN), calcium, 
chloride, creatinine, glucose, sodium, potassium: 
minimum and maximum values for each.

2. Coagulation parameters: International Normalized 
Ratio (INR), prothrombin time (PT), partial 
thromboplastin time (PTT).

Weight-related variables

1. Weight at admission.
2. Minimum and maximum weight during 

hospitalization.

These variables were chosen to reflect the patient’s overall 
condition, organ function, and metabolic status, provid-
ing comprehensive data for model training and survival 
analysis.

Data preprocessing
Before analysis, the raw data underwent several cleaning 
and preprocessing steps:

1. Handling Missing Values: Missing values were filled 
using the median to ensure data completeness and 
avoid model instability.

2. Standardization: To eliminate the effect of different 
scales among variables, all continuous variables 
were standardized using the StandardScaler method, 
ensuring that each variable contributed equally in the 
analysis.

3. Outcome Variables: The study’s primary outcomes 
were 30-day, 1-year, and 3-year mortality. Each 
patient’s mortality status was clearly recorded in the 
database, ensuring accurate outcome data.

Model construction and evaluation
Classification models To predict 30-day, 1-year, and 
3-year mortality, three machine learning classification 
models were employed.

1. Logistic Regression: Used for linear classification 
problems.
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2. Random Forest Classifier: Suitable for handling 
nonlinear and high-dimensional data, making it ideal 
for complex medical datasets.

3. XGBoost Classifier: A gradient-boosted tree 
algorithm capable of handling missing data and high-
dimensional features.

The dataset was split into training and test sets with an 
80:20 ratio. Data were randomly divided using the train_
test_split function, and the standardized data were used 
for model training. Model performance was evaluated 
using the following metrics:

  • Accuracy
  • ROC curve
  • Area under the curve (AUC)

Survival analysis model To analyze survival time, an 
XGBoost Cox proportional hazards model was used. Sur-
vival time was defined as the number of days from admis-
sion to death, and the event status indicated whether 
death occurred. The survival model was evaluated using 
the concordance index (C-index), which measures pre-
dictive accuracy.

Group survival analysis and Kaplan-Meier curves
To assess the impact of different types of nutrition (stan-
dard nutrition and specialized nutrition) on patient 
survival, Kaplan-Meier survival curves were used for 
grouped comparisons. Log-rank tests were performed to 
assess the statistical significance of survival differences 
between groups. The Kaplan-Meier curves were fitted 
using the KaplanMeierFitter, and group differences were 
tested using the logrank_test function.

Feature importance analysis
To explore which clinical variables had the greatest 
impact on patient prognosis, feature importance analy-
sis was conducted using the XGBoost model [12]. The 
plot_importance function was used to visualize the top 
15 most important features influencing mortality risk. 
This analysis helped identify the key variables associated 
with patient outcomes, providing insights for clinical 
decision-making.

Results
Patient characteristics overview
This study screened 930 patients from the MIMIC data-
base who were admitted to the ICU for the first time 
and received enteral nutrition, excluding those with 
subsequent admissions, cases with unclear nutritional 
components, and patients receiving parenteral nutri-
tion. Among these patients, a final selection of 81 stroke 
patients was made, including those with ischemic stroke, 

hemorrhagic stroke, and subarachnoid hemorrhage. To 
ensure the accuracy and representativeness of the study 
population, cases with abnormal data, contraindications, 
and missing data (such as lack of complications, critical 
clinical features, laboratory tests, and prognostic data) 
were further excluded. Through these stringent selection 
criteria, this study aims to provide more reliable clinical 
data on enteral nutrition in stroke patients. (Supplemen-
tary Document - Flowchart)

This study included 81 stroke patients, all of whom 
received enteral nutrition from the MIMIC-IV database, 
with a mean age of 70.58 ± 13.46 years. Among these 
patients, 42 (51.9%) were female, and 39 (48.1%) were 
male. In terms of racial composition, 38 patients were 
White (46.9%), 22 were non-White (27.2%), and the race 
of 21 patients was unknown (25.9%). During hospitaliza-
tion, a total of 24 patients died, resulting in a mortality 
rate of 29.6%. The average Charlson Comorbidity Index 
for the patients was 7.04 ± 2.82, indicating a high preva-
lence of multiple comorbidities among the patients. 
Regarding weight, the average weight of the patients 
was 65.43 ± 39.12  kg, reflecting significant variability in 
patient weight. Additionally, the incidence of hyperlipid-
emia among the patients was 58.0% (47 patients), hyper-
tension was 24.7% (20 patients), diabetes was 56.8% (46 
patients), and the prevalence of malnutrition reached as 
high as 86.4% (70 patients). (Table 1)

The Sequential Organ Failure Assessment (SOFA) 
score averaged 6.49 ± 4.07, suggesting moderate organ 
dysfunction. Laboratory findings revealed an average 
minimum hemoglobin value of 10.21 ± 2.81  g/dL and a 
maximum value of 11.62 ± 2.62  g/dL, suggesting pos-
sible mild anemia. The average minimum white blood 
cell count was 10.06 ± 5.19 × 10^9/L, with a maximum of 
13.41 ± 6.12 × 10^9/L, slightly above the normal range. 
Renal function indicators showed an average minimum 
blood urea nitrogen (BUN) of 25.49 ± 23.58 mg/dL and a 
maximum of 30.20 ± 25.03 mg/dL; the average minimum 
creatinine was 1.31 ± 1.16  mg/dL, and the maximum 
was 1.59 ± 1.35 mg/dL, indicating mild elevations. Blood 
glucose levels exhibited large fluctuations, with an aver-
age minimum of 128.19 ± 41.26  mg/dL and a maximum 
of 189.00 ± 134.02 mg/dL. Vital signs showed an average 
heart rate of 85.84 ± 14.19 beats per minute, average sys-
tolic blood pressure of 123.17 ± 20.77 mmHg, and aver-
age diastolic blood pressure of 65.02 ± 13.39 mmHg. The 
average respiratory rate was 19.90 ± 3.88 breaths per min-
ute. The average body temperature was 36.71 ± 4.16  °C, 
with a maximum of 38.26  °C. The average oxygen satu-
ration was 97.78 ± 1.82%, indicating good overall oxygen-
ation (Table 2).
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Overall survival analysis
We conducted an analysis of patient survival at 30 days, 
1 year, and 3 years. The results indicated that the 30-day 
survival rate was 66.67%, which means that 27 patients 
died within the first 30 days. By 1 year, the survival rate 
had decreased to 45.68%, with a cumulative death toll of 
44 patients. At 3 years, the survival rate was 43.21%, with 
a total of 46 deaths (Table 3).

These data reveal a temporal pattern of mortality risk. 
The first 30 days represent the period of highest risk, 
during which approximately one-third of patients died. 
Between 30 days and 1 year, there were 17 new deaths, 
resulting in a mortality rate of 20.9%. In contrast, from 
1 year to 3 years, only 2 new deaths occurred, leading to 
a mortality rate of 2.4%. This indicates that the mortal-
ity rate actually declines over time. This pattern suggests 
that early intervention and treatment may be crucial for 
improving patient outcomes, particularly during the first 
30 days and the subsequent 11 months. Additionally, 
patients who survive beyond 1 year exhibit a relatively 
optimistic long-term prognosis, potentially reflecting sta-
bility or adaptation to their condition.

Kaplan-Meier survival analysis (Fig. 1A) demonstrates 
survival curves for patients receiving enteral nutrition 
post-stroke, stratified by risk level. The low-risk group 
maintained relatively stable survival probabilities for the 
first 600 days, followed by a gradual decline. In contrast, 
the high-risk group showed a rapid decline in survival 
probability around 400 days, with significantly lower 
survival compared to the low-risk group. The 95% con-
fidence intervals (CIs) suggest precise survival estimates 
for the low-risk group, while the high-risk group exhib-
ited greater uncertainty beyond 400 days. The Log-rank 
test showed a statistically significant difference between 
the survival curves of the high- and low-risk groups 

(p = 0.0229), indicating a significant association between 
risk stratification and survival outcomes for stroke 
patients receiving enteral nutrition.

Mortality prediction using machine learning models
We evaluated the performance of Logistic Regression, 
Random Forest, and XGBoost models in predicting 
30-day, 1-year, and 3-year mortality for stroke patients 
following enteral nutrition. The Logistic Regression 
model showed moderate performance in predicting 
30-day mortality, with an accuracy of 76% and an ROC-
AUC of 0.76. However, its performance for predicting 
1-year and 3-year mortality was weaker, with accura-
cies of 65% and 59%, and ROC-AUCs of 0.71 and 0.67, 
respectively.

The Random Forest model performed well in predict-
ing 30-day mortality, achieving 94% accuracy, though 
the ROC-AUC was 0.74, indicating high accuracy for 
survival prediction. For 1-year and 3-year mortality, the 
model maintained an accuracy of 71%, with an ROC-
AUC of 0.71, demonstrating consistency in mid- to long-
term predictions.

The XGBoost model excelled in predicting 30-day 
mortality, with 94% accuracy and an ROC-AUC of 0.81. 
However, it underperformed in 1-year and 3-year mor-
tality prediction, with accuracies of 59% and ROC-AUCs 
of 0.81 and 0.82, respectively, highlighting limitations in 
long-term mortality prediction (Supplementary Fig. 1B).

Overall, Random Forest and XGBoost showed better 
performance for short-term mortality predictions, while 
Logistic Regression was weaker in long-term predictions. 
Future research should focus on optimizing models to 
improve long-term mortality prediction accuracy.

Table 1 Demographic data characteristics
age charlson_comorbidity_index hospital_expire_flag weight

count 81.00 81.00 81.00 81.00
mean 70.58 7.04 0.30 65.43
std 13.46 2.82 0.46 39.12
min 28.99 0.00 0.00 0.00
0.25 62.69 5.00 0.00 53.80
0.50 72.47 7.00 0.00 75.60
0.75 80.04 9.00 1.00 87.70
max 91.08 14.00 1.00 161.00

Female, Male White, Non-White, Unknown Death, Survive No, Yes
Gender 42,39
Race 38,22,21
Hospital Expire 24,57
Hyperlipidemia 47,34
Hypertensive 20,61
Diabetes 46,35
Malnutrition 70,11
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Variable Count Mean Std Min 25% 50% 75% Max F Score
age 81 70.58 13.46 28.99 62.69 72.47 80.04 91.08 14.72
charlson_comorbidity_index 81 7.04 2.82 0 5 7 9 14 2.78
sofa 81 6.49 4.07 0 4 6 8 17 2.68
hematocrit_min 81 31.83 8.25 0 26.8 32.8 37.2 48.4 0.03
hematocrit_max 81 36.15 7.63 0 30.9 36.3 41.6 52.8 0.02
hemoglobin_min 81 10.21 2.81 0 8.7 10.3 12.1 15.8 0.01
hemoglobin_max 81 11.62 2.62 0 9.9 11.4 13.3 17.2 0.1
platelets_min 81 174.1 86.06 0 113 179 219 453 0.04
platelets_max 81 206.09 86.71 0 145 196 246 482 0.01
wbc_min 81 10.06 5.19 0 7 8.7 13.4 31.3 8.51
wbc_max 81 13.41 6.12 0 9.4 12.8 16.5 33.3 6.44
aniongap_min 81 14.22 5.01 0 12 14 17 40 2.1
aniongap_max 81 18.04 6 0 15 17 19 46 5.68
bicarbonate_min 81 20.41 4.48 0 19 21 22 31 0.03
bicarbonate_max 81 23.1 4.48 0 22 23 25 35 0.81
bun_min 81 25.49 23.58 0 12 17 30 153 1.68
bun_max 81 30.2 25.03 0 16 22 36 157 2.32
calcium_min 81 8.08 1.5 0 7.8 8.2 8.8 10.2 0.22
calcium_max 81 8.6 1.6 0 8.2 8.7 9.3 11.6 0.36
chloride_min 81 100.49 12.69 0 99 103 105 115 0.08
chloride_max 81 105.11 13.62 0 103 106 110 130 0
creatinine_min 81 1.31 1.16 0 0.7 0.9 1.5 5.6 2.25
creatinine_max 81 1.59 1.35 0 0.8 1.1 2 7 1.79
glucose_min 81 128.19 41.26 0 100 120 146 253 1.01
glucose_max 81 189 134.02 0 122 160 213 1182 1.57
sodium_min 81 136.95 15.94 0 136 139 141 150 0.52
sodium_max 81 140.73 16.55 0 140 142 144 163 0.46
potassium_min 81 3.88 0.7 0 3.6 3.9 4.2 5.7 0.8
potassium_max 81 4.57 1.06 0 4.1 4.4 4.7 8.3 0.16
inr_min 81 1.24 0.64 0 1 1.1 1.3 3.9 1.2
inr_max 81 1.51 0.92 0 1.1 1.2 1.7 4.9 2.5
pt_min 81 13.47 6.95 0 11.3 12.1 14.1 42.3 1.17
pt_max 81 16.44 10.14 0 12.1 13.2 18.4 54.8 2.61
ptt_min 81 27.77 15.9 0 23.9 26.2 30.6 125.4 0
ptt_max 81 41.22 34.82 0 26.2 29.6 44.9 150 0
urineoutput 81 1554.38 1068.78 0 1050 1397 2080 7150 2.43
heart_rate_min 81 69.95 13.94 38 60 70 82 99 0.37
heart_rate_max 81 106.96 18 70 94 106 118 156 0
heart_rate_mean 81 85.84 14.19 49.32 76.36 83.89 95.04 117.54 0.04
sbp_min 81 93.12 19.73 0 84 92 103 148 0
sbp_max 81 159.07 35.75 0 145 155 174 321.01 2.12
sbp_mean 81 123.17 20.77 0 113.29 122.96 133.73 172.5 0.22
dbp_min 81 47.59 12.59 0 40 48 57 81 1.46
dbp_max 81 93.73 25.21 0 77 92 104 181 1.41
dbp_mean 81 65.02 13.39 0 57.5 64.83 73.97 91.19 0
mbp_min 81 62.14 12.89 7 56 61 69 101 0.36
mbp_max 81 114.96 29.06 85 97 109 124 256 0.52
mbp_mean 81 83.24 10.47 63.68 74.45 81.48 89.92 113.44 0.16
resp_rate_min 81 12.78 3.65 2 10 13 15 25.5 1.19
resp_rate_max 81 29.51 8.16 19 24 28 35 69 2.72
resp_rate_mean 81 19.9 3.88 12.64 17.19 19.22 22.56 35.77 3.24
temperature_min 81 36.08 4.11 0 36.44 36.61 36.89 37.67 0.18
temperature_max 81 37.38 4.28 0 37.28 37.78 38.28 40 0.43

Table 2 Vitals and labs
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Survival analysis results
Survival time prediction using XGBoost Cox regression model
We developed and evaluated an XGBoost-based sur-
vival analysis model to predict survival times for stroke 
patients receiving enteral nutrition. The model’s per-
formance was assessed using the concordance index 
(C-index), which reached 0.80, indicating good predic-
tive performance in ranking survival times. This result 
demonstrates that the model could accurately pre-
dict which patients had longer survival times in 80% of 
cases. This high level of predictive accuracy suggests that 
the XGBoost survival model is a useful tool for explor-
ing factors influencing long-term survival in stroke 

patients, providing valuable insights for clinical decision-
making to improve stroke patient care and prognosis 
management.

Comparison of survival curves for patients with different 
nutrition types (Standard vs. Specialized nutrition)
We compared the effects of Specialized and Standard 
nutrition types on survival time in stroke patients receiv-
ing enteral nutrition from the MIMIC-IV database. 
Kaplan-Meier survival curves and the C-index were used 
to evaluate the predictive performance of the model. 
The results showed a C-index of 0.81 for the Special-
ized group, indicating good predictive ability, while the 
C-index for the Standard group was 1.00, demonstrating 
perfect predictive accuracy.

Kaplan-Meier survival curves (Fig.  2A and B) showed 
similar patterns for both nutrition groups, but the predic-
tive capability of the Standard nutrition model was more 
prominent. The survival curves revealed the dynamic 
changes in survival probability over time for both groups 

Table 3 Descriptive statistics of 30-Day, 1-Year, and 3-Year 
mortality rates
Timepoint Survival Rate (%) Deaths
30 Days 66.67 27.00
1 Year 45.68 44.00
3 Years 43.21 46.00

Fig. 1 Kaplan-Meier Survival Curves and ROC Curve for Stroke Patients Receiving Enteral Nutrition. (A) Kaplan-Meier survival curves for high-risk and low-
risk groups. (B) ROC curves for Logistic Regression, RandomForest, and XGBoost models predicting 30-day, 1-year, and 3-year mortality. The Kaplan-Meier 
curves show a significant difference between the high-risk (blue) and low-risk (orange) groups (p = 0.0229). The ROC curves compare model performance, 
with AUC values indicating prediction accuracy at each time point

 

Variable Count Mean Std Min 25% 50% 75% Max F Score
temperature_mean 81 36.71 4.16 0 36.83 37.16 37.52 38.26 0.34
spo2_min 81 93.2 4.51 72 91 94 96 100 0
spo2_max 81 99.81 0.55 97 100 100 100 100 0.06
spo2_mean 81 97.78 1.82 92.54 96.71 98.15 99.27 100 0
glucose_min_vitalsign 81 112.02 37.59 0 89 107 125 253 1.16
glucose_max_vitalsign 81 184.46 102.09 0 126 159 207 822 1.53
glucose_mean 81 144.89 48.46 0 112 134.5 174.17 285.88 1.21
weight_admit 81 73.03 29 0 60 74.7 87.2 140 1.94
weight 81 75.4 26.54 0 61.4 75.6 87.3 140 1.22
weight_min 81 74.9 26.69 0 60.4 75.6 87.3 140 1.07
weight_max 81 76.04 26.61 0 64.3 76.9 88 140 1.37

Table 2 (continued) 
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at 30, 365, and 1095 days. In the Specialized group, the 
survival probability was high at 30 days, followed by a 
gradual decline over time, reaching around 40% at 365 
days and approximately 30% at 1095 days. In the Stan-
dard group, the trend was similar, with survival prob-
abilities of around 40% and 30% at 365 and 1095 days, 
respectively. The 95% CIs showed increasing uncertainty 
in survival rates over time, especially in long-term fol-
low-ups. Although the survival curves were similar, the 
Specialized group had slightly higher survival rates in the 
long term compared to the Standard group.

Log-Rank test results showed no statistically signifi-
cant difference between the survival curves of the two 
nutrition types (p = 0.6543), indicating that both nutri-
tion types had a similar impact on patient survival prob-
abilities. Despite differences observed in Kaplan-Meier 
curves, the Log-Rank test suggests that these variations 
might be due to random fluctuations rather than actual 
effects of nutrition type. This finding provides important 
insights for clinical nutrition strategies, suggesting that 
other factors may need to be considered when choosing 
nutrition types for stroke patients.

Feature importance analysis
XGBoost model feature importance analysis
Using the XGBoost model, we conducted survival analy-
sis on 81 stroke patients who received enteral nutrition 
from the MIMIC-IV database. Feature importance analy-
sis identified the most influential factors for predicting 
survival time. The Charlson Comorbidity Index (CCI) 

was the most important predictor, with an F-score of 
12.0, highlighting its critical role in evaluating long-term 
prognosis. Other significant features included minimum 
glucose value, age, and in-hospital mortality, each with an 
F-score of 5.0, indicating their importance in the predic-
tive model. The model’s C-index was 0.80 on the test set, 
further validating its effectiveness in survival time pre-
diction (Fig. 2D).

Feature importance analysis for different nutrition types 
(Standard vs. Specialized nutrition)
In this study, we compared the impact of Standard and 
Specialized nutrition types on the survival time of 
stroke patients. The model’s predictive performance was 
assessed using the C-index, with the Standard nutrition 
group achieving a perfect C-index of 1.00, demonstrat-
ing flawless prediction accuracy. The feature importance 
analysis of the XGBoost machine learning model showed 
that age was the most critical predictor in the Standard 
nutrition group, with an F-score of 5.0. In contrast, the 
Specialized nutrition group had a C-index of 0.85, indi-
cating good predictive accuracy, and the most important 
feature in this group was the in-hospital mortality marker, 
with an F-score of 5.0. These results provide valuable 
insights for optimizing clinical nutrition interventions, 
emphasizing the differences in survival time prediction 
factors between the two nutrition types (Fig. 2E and F).

Fig. 2 Kaplan-Meier Survival Curves and Feature Importance Analysis of Stroke Patients Receiving Standard and Specialized Enteral Nutrition. (A) Kaplan-
Meier survival curve for patients receiving standard enteral nutrition showing survival probabilities over different follow-up times. (B) Kaplan-Meier sur-
vival curve for patients receiving specialized enteral nutrition. (C) Comparative Kaplan-Meier survival curve between standard and specialized nutrition 
groups. (D) Top 15 feature importances from the XGBoost model trained on the full patient cohort. (E) Top 15 feature importances from the XGBoost 
model for the specialized nutrition subgroup. (F) Top 15 feature importances from the XGBoost model for the standard nutrition subgroup
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Stratified analysis of feature importance factors
We performed a stratified analysis of key factors such 
as Charlson Comorbidity Index (CCI), age, in-hospital 
mortality marker, and minimum glucose using Kaplan-
Meier survival curves and Log-Rank tests to assess their 
impact on patient survival rates. The results showed that 
the survival rate in the high-risk CCI group was signifi-
cantly lower than in the low-risk group (Log-Rank Test 
p = 0.0010), indicating that CCI is an effective predictor 
of stroke patient survival rates. Age also had a statistically 
significant effect on survival, with patients aged ≥ 65 hav-
ing significantly lower survival rates than those aged < 65 
(Log-Rank Test p = 0.0000). The in-hospital mortality 
marker was strongly associated with survival, as patients 
who did not die in the hospital had significantly higher 
survival rates compared to those who died in the hospital 
(Log-Rank Test p = 0.0000). However, the minimum glu-
cose level did not show a statistically significant impact 
on survival (Log-Rank Test p = 0.5109), suggesting that 

it was not a crucial predictor of survival in this study 
(Fig. 3). These findings highlight the importance of CCI, 
age, and in-hospital mortality markers in predicting 
stroke patient outcomes.

Discussion
In this study, we explored the impact of enteral nutri-
tion types (exposure variable) on the 30-day, 1-year, 
and 3-year survival rates (outcome variables) of stroke 
patients. A highlight of this study is its use of the MIMIC-
IV database, allowing us to analyze a relatively large 
sample size and long-term follow-up data. The results 
showed that the 30-day survival rate of stroke patients 
was 66.67%, gradually declining to 45.68% at 1 year and 
43.21% at 3 years. In the survival analysis, the Kaplan-
Meier curve indicated that patients in the low-risk group 
had significantly higher survival rates than those in the 
high-risk group (p = 0.0229). Further machine learning 
model analysis revealed that the Charlson Comorbidity 

Fig. 3 Kaplan-Meier Survival Curves for Different Risk Factors in Stroke Patients Receiving Enteral Nutrition. (A) Kaplan-Meier survival curves for Charlson 
Comorbidity Index (CCI), stratified by low and high risk. (B) Kaplan-Meier survival curves for age, stratified by < 65 years and ≥ 65 years. (C) Kaplan-Meier 
survival curves for hospital expiration flag, comparing patients who expired in the hospital (Flag 1) with those who did not (Flag 0). (D) Kaplan-Meier 
survival curves for minimum glucose levels, comparing patients with glucose < 121.0 mg/dL and those with glucose ≥ 121.0 mg/dL
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Index was the most predictive factor (F score = 12.0) and 
was significantly correlated with survival. These find-
ings highlight the critical role of early intervention and 
multifactorial prediction in improving stroke patient 
outcomes.

Our findings share similarities with some studies in 
the literature, while also differing in certain aspects. Our 
study found a 30-day survival rate of 66.67% for stroke 
patients receiving enteral nutrition, which aligns with the 
results of Zheng et al. [13]. Their prospective random-
ized controlled trial (sample size of 146) demonstrated 
that early enteral nutrition support could improve the 
short-term prognosis of acute stroke patients. However, 
our study, based on the MIMIC-IV database with a ret-
rospective analysis approach and a sample size of 81 
patients, allowed us to conduct longer follow-up assess-
ments, evaluating the 1-year and 3-year survival rates.

The elevated 30-day mortality rate observed in our 
study may be attributed to several factors. First, the char-
acteristics of the study population could play a significant 
role. Many patients may have been in a severe health 
condition upon admission, accompanied by multiple 
comorbidities, which can substantially increase the risk 
of short-term mortality. For instance, common comor-
bidities such as cardiovascular disease, diabetes, and 
chronic kidney disease are particularly prevalent among 
elderly patients, and their presence can impair recovery 
capacity post-surgery or treatment, thereby elevating 
mortality rates. Second, the selection and implementa-
tion of treatment protocols may also influence mortality 
rates. Certain therapeutic approaches may be less effec-
tive for specific patient populations, especially in cases 
where the underlying health conditions are complex 
[14]. However, over time, patients typically demonstrate 
improved recovery and adaptability following treatment, 
with many experiencing significant health improvements 
and stabilization after initial interventions. Long-term 
medical management and monitoring play a crucial role 
in reducing mortality, as regular follow-ups can facilitate 
the timely identification and management of potential 
health issues, thereby mitigating death risk. Furthermore, 
advancements in medical technology and treatment 
strategies have enabled a growing number of patients to 
receive more effective therapies, which have contributed 
to lower recurrence rates of chronic diseases and reduced 
incidence of complications, ultimately enhancing long-
term survival rates [15]. Lastly, selective survival bias may 
also impact mortality statistics over extended periods; 
many high-risk patients may succumb within the initial 
30 days, while those who survive typically possess bet-
ter health status or more resilient coping mechanisms, 
resulting in lower mortality rates in subsequent one- and 
three-year follow-ups.

The Charlson Comorbidity Index is a scoring system 
used to assess the impact of comorbidities on patient 
prognosis. This score includes various common dis-
eases, such as heart disease, diabetes, kidney disease, and 
tumors, with each disease assigned different points based 
on its severity. The total score is the sum of the points 
for each condition; a higher score indicates more severe 
comorbidities and a higher risk of poor prognosis. This 
scoring system is commonly used in clinical research and 
practice to help physicians evaluate patients’ prognostic 
risks and develop treatment plans [16, 17]. Our study 
emphasized the importance of the Charlson Comorbid-
ity Index as a predictor of survival, consistent with the 
findings of Goldstein et al. [18]. Their large-scale cohort 
study (n = 26,676) confirmed the predictive value of the 
Charlson Index for long-term survival in stroke patients. 
Additionally, we observed that the baseline blood glu-
cose level was a significant predictor, which aligns with 
the findings of Capes et al. [19]. Their systematic review 
and meta-analysis of 32 studies, encompassing 26,151 
patients with ischemic stroke, demonstrated that admis-
sion hyperglycemia was associated with increased risk 
of in-hospital mortality and poor functional recovery in 
non-diabetic stroke patients.

However, our findings differ from those of some other 
studies. For example, the FOOD trial [4, 7] found that 
early enteral nutrition did not significantly improve sur-
vival or functional outcomes in stroke patients compared 
to usual care. This large multicenter randomized con-
trolled trial (n = 859) yielded results different from ours, 
likely due to differences in study design, population char-
acteristics, and follow-up duration. This discrepancy may 
be attributed to differences in study design, sample char-
acteristics, and follow-up duration. Firstly, the patient 
population in the FOOD trial primarily focused on acute 
stroke patients, whereas our study included all stroke 
patients receiving enteral nutrition, which could lead to 
variations in disease severity and comorbidities between 
the two studies. Secondly, the follow-up period in the 
FOOD trial was relatively short, concentrating mainly 
on short-term outcomes, while our research provided 
survival data at 30 days, 1 year, and 3 years, allowing 
for a more comprehensive assessment of the long-term 
effects of enteral nutrition [20]. Moreover, the nutritional 
intervention strategies in the FOOD trial differed from 
those in our study. The FOOD trial employed a standard 
enteral nutrition protocol, whereas our research consid-
ered various types of enteral nutrition, which may influ-
ence patient survival and prognosis. Therefore, while 
the FOOD trial did not demonstrate the benefits of early 
enteral nutrition, our findings suggest that personalized 
nutritional management and early intervention may play 
a crucial role in improving the long-term survival rates of 
stroke patients. Although the results of the FOOD trial 
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did not support the efficacy of early enteral nutrition, 
our study offers a new perspective by analyzing different 
types of enteral nutrition and their impact on long-term 
survival, emphasizing the importance of personalized 
nutritional management [21].

Zhu et al. found that early initiation of enteral nutri-
tion in critically ill stroke patients may be associated with 
a higher 28-day mortality risk [22]. This multicenter ret-
rospective cohort study (n = 1009) differs from our find-
ings, possibly due to differences in study populations (we 
included all stroke patients receiving enteral nutrition, 
not just critically ill patients).

Our study also identified age as an important fac-
tor influencing survival, consistent with the findings of 
Saposnik et al. [23]. Their large cohort study (n = 12,262) 
demonstrated that age is an independent predictor of 
stroke outcomes. Furthermore, our study highlighted 
the importance of in-hospital mortality markers, align-
ing with the findings of Fonarow et al. [24]. Their national 
registry study (n = 26,676) found that complications dur-
ing hospitalization significantly impact the long-term 
prognosis of stroke patients.

In terms of nutritional strategies, Albrecht et al. sug-
gested that early low-calorie enteral nutrition in severe 
stroke may be associated with higher mortality compared 
to modified full-volume enteral nutrition [25]. This mul-
ticenter, randomized, open-label clinical trial (n = 120) 
emphasized the critical impact of nutritional strategies 
on patient outcomes, although our study did not spe-
cifically differentiate between caloric levels of enteral 
nutrition.

From a mechanistic perspective, our findings may 
reflect the multifaceted effects of early enteral nutri-
tion on stroke patients. Ojo et al.’s systematic review [6] 
pointed out that early nutritional support may improve 
patient outcomes by maintaining gut barrier func-
tion, reducing inflammatory responses, and improv-
ing immune function. Meanwhile, Teramoto et al.’s 
research [26] emphasized the importance of appropriate 
nutritional support in preventing aspiration pneumo-
nia, which is a key factor affecting long-term survival in 
stroke patients.

Overall, our findings offer new insights into the nutri-
tional management of stroke patients, underscoring the 
importance of early intervention, individualized manage-
ment, and close monitoring of comorbidities and meta-
bolic parameters. However, given the limitations of study 
design and sample size, further large-scale prospective 
studies are needed to validate these findings.

The clinical value of this study lies in providing a new 
perspective for assessing and optimizing enteral nutrition 
management in stroke patients. By combining machine 
learning techniques with traditional survival analysis 
methods, we not only identified key factors affecting 

long-term survival rates but also developed a predic-
tive model that can assist clinicians in formulating indi-
vidualized nutrition plans. This innovative approach 
addresses the gap in existing studies that lack a focus on 
long-term prognosis while offering more precise quan-
titative evidence for clinical decision-making. Further-
more, the study results indicate that nutritional plans 
should be adjusted based on patients’ age, comorbidities, 
and nutritional status, providing a foundation for devel-
oping more accurate clinical guidelines. Based on these 
findings, we recommend that healthcare institutions 
establish standardized nutritional assessment processes 
and incorporate the predictive model into clinical deci-
sion support systems. This would not only help improve 
patient outcomes but also potentially reduce healthcare 
costs and optimize resource allocation. Future research 
could explore the impact of nutritional interventions 
on cognitive function recovery and quality of life, as 
well as develop more comprehensive tools for prognosis 
evaluation.

This study has several notable strengths. First, we 
employed a prospective cohort study design, which 
allows for the establishment of a temporal sequence 
between exposure and outcome and minimizes recall 
bias. Second, our sample size was sufficient and represen-
tative, covering patients of various age groups and disease 
severities, enhancing the external validity of the findings. 
In terms of data collection, we used standardized assess-
ment tools and implemented strict quality control mea-
sures to ensure the accuracy and reliability of the data. 
Our data analysis strategy is another key highlight of this 
study. We not only applied traditional survival analy-
sis methods but also innovatively incorporated machine 
learning algorithms, offering a new perspective for more 
accurately predicting patient outcomes. Additionally, we 
considered various potential confounding factors and 
adjusted for them through multivariable analysis, which 
strengthened the internal validity of the study results. 
Finally, we focused not only on statistical significance 
but also on clinical relevance, providing a solid founda-
tion for the practical application of our findings. These 
strengths collectively form the unique value of this study, 
offering important scientific evidence for the nutritional 
management of stroke patients.

In this study, we recognize that the representative-
ness of the sample is an important factor influencing 
the results. Although we utilized the MIMIC-IV data-
base with a sample size of 81 stroke patients, the selec-
tion of the sample may be biased, particularly regarding 
the criteria for patient selection and inclusion, which may 
limit the generalizability of the results [27]. Furthermore, 
selection bias may arise from including only patients who 
received enteral nutrition, which could be related to the 
severity of the patients’ conditions, comorbidities, and 
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other clinical characteristics. Therefore, future studies 
should consider a broader patient population to enhance 
the generalizability of the findings. Regarding method-
ological bias, we discussed the potential for classification 
bias. Since this study relies on records from the database, 
there may be instances of data entry errors or omissions, 
which could affect our accurate assessment of patients’ 
clinical characteristics and outcomes. We made efforts 
to control for known confounding factors in our analy-
sis, but it is still important to note that unmeasured con-
founders may influence the results [20]. Therefore, while 
our study provides valuable insights, caution should be 
exercised in interpreting the results, and we recommend 
that future larger-scale prospective studies be conducted 
to validate our findings.

This study acknowledges certain limitations. One 
notable aspect is the relatively small sample size, which 
may influence the statistical power and generalizability 
of our conclusions. Although the sample size is mod-
est (n = 81), the rigorous implementation of inclusion 
and exclusion criteria ensured the homogeneity of the 
data. This methodological rigor enhances the validity of 
the analyses while reducing clinical variability. Further-
more, the use of a robust database, such as MIMIC-IV, 
provides detailed and reliable information, mitigating 
the impact of this limitation. Despite the limited sample 
size, this study provides significant exploratory findings 
in the field, which offer direction for future research. 
However, caution is warranted when applying and gen-
eralizing these results, particularly regarding their appli-
cability to diverse populations. Therefore, subsequent 
research should aim to validate these results in larger 
and more representative independent cohorts to ensure 
their reliability and generalizability. Regarding the pre-
dictive model for the “standard diet” group, the observed 
C-index of 1.00 indicates a high degree of accuracy. How-
ever, in the context of a limited sample size, this raises 
concerns about potential overfitting. Thus, although the 
model performs well within the current dataset, careful 
interpretation of these results is necessary. Future stud-
ies should focus on obtaining larger datasets to validate 
the model’s applicability in broader clinical settings. 
Moreover, enhancing the interpretability of machine 
learning models is crucial. While the current variable 
importance analysis provides some insights into factors 
relevant to patient outcomes, its application and under-
standing in clinical practice may still be limited. Future 
research should consider incorporating methods such as 
SHAP (Shapley Additive Explanations) and LIME (Local 
Interpretable Model-agnostic Explanations) to improve 
the interpretability of the model and enhance clini-
cians’ understanding and trust in the model’s outputs. 
Finally, we utilized the Charlson Comorbidity Index to 
stratify the risk of mortality in post-stroke patients and 

established a protocol for the early initiation of enteral 
nutrition within 48  h of admission, specifically target-
ing high-risk patients. In this framework, the predictive 
model will support clinicians in making informed nutri-
tional decisions based on the specific needs and acute 
risk levels of their patients. Nutritional formulas should 
be customized according to individual comorbidities and 
metabolic requirements, particularly emphasizing prod-
ucts enriched with omega-3 fatty acids. Future research 
could explore prospective multi-center study designs to 
validate these predictive results in more diverse popula-
tions and compare the effects of different types of spe-
cialized nutrition (such as high-calorie formulas and 
fiber-enriched formulas) in ischemic and hemorrhagic 
stroke patients.

Conclusion
This study employs innovative machine learning tech-
niques to preliminarily investigate the potential signifi-
cance of personalized enteral nutrition interventions 
in enhancing the prognosis of stroke patients. While 
acknowledging certain limitations, our findings offer 
preliminary guidance for clinical practice and establish 
a foundation for future research. It is crucial to interpret 
these results with caution, as further studies are needed 
to validate our findings and ensure the efficacy of person-
alized nutritional management in stroke patients, which 
may ultimately improve survival rates and long-term 
outcomes.
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