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Abstract
Background  Several previous observational studies have shown that abnormal sphingomyelin metabolism may be 
implicated in the pathogenesis of Alzheimer’s disease. To determine the causal relationship between sphingolipid 
abundance and gut microbiota abundance at the genetic level, we conducted a Mendelian randomization (MR) 
investigation.

Methods  We first used the TwoSampleMR and MRPRESSO packages for conducting two-sample MR studies. Second, 
we utilized random effect inverse variance weighting (IVW) as the principal method of analysis and used MR‒Egger, 
the weighted median, the simple mode and the weighted mode as supplementary methods. Finally, we performed 
tests for heterogeneity and horizontal pleiotropy. These analyses were also conducted to evaluate the impact of 
individual SNPs on the outcomes of our analysis. A Bonferroni-corrected threshold of p = 2.4e-4(0.05/211) was 
considered significant, and p values less than 0·05 were considered to be suggestive of an association.

Results  The results showed that sphingolipid levels were suggestively associated with the abundance of 6 gut 
microbiota taxa. Specifically, two taxa were positively correlated with sphingolipid levels, including the family 
Alcaligenaceae (p = 0.006, OR 95% CI = 1.109 [1.030–1.194]) and the species Ruminococcus callidus (p = 0.034, OR 95% 
CI = 1.217 [1.015–1.460]). In contrast, negative correlations were observed with the abundances of 4 gut microbiota 
taxa, including the genus Flavonifractor (p = 0.026, OR 95% CI = 0.804 [0.663–0.974]), the genus Streptococcus (p = 0.014, 
OR 95% CI = 0.909 [0.842–0.981]), the species Bacteroides caccae (p = 0.037, OR 95% CI = 0.870 [0.763–0.992]), and the 
species Haemophilus parainfluenzae (p = 0.006, beta 95% CI = -0.269 [-0.462, -0.076]). The results presented a normal 
distribution, with no anomalous values, heterogeneity, or horizontal pleiotropic effects detected.

Conclusions  This two-sample MR study revealed a potential causal relationship between sphingomyelin levels and 
gut microbiota abundance.
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Introduction
Alzheimer’s disease (AD) is a degenerative neurological 
condition resulting from injury to nerve cells (neurons) 
in the brain and represents the most prevalent form of 
dementia [1, 2]. Its pathological features mainly include 
abnormal forms of protein tau and β-amyloid plaques in 
neurons [2]. One study suggests that from 2000 to 2019, 
mortality rates associated with stroke, heart disease, and 
prostate cancer decreased, while the mortality rate for 
AD increased by approximately 145% during the same 
period. AD poses a serious threat to patients’ quality of 
life, significantly impacting the workforce of families 
and society. A majority of AD patients exhibit atypical 
symptoms, particularly involving language, executive 
functioning, vision, behaviour and other impairments 
[3]. However, these people are often diagnosed very late. 
Although much research and progress has been made in 
the pathogenesis, diagnosis and treatment of AD, there 
are still many challenges. According to some published 
reports, sphingomyelin can be used as a target for AD 
treatment [4–8]. Sphingomyelin derived from progeni-
tor cells is a special type of oligodendrocyte membrane 
[9]. Sphingomyelin is particularly important in the ner-
vous system. It is a key component of neuronal myelin 
and contributes to the conduction of nerve signals. As a 
major regulator of axonal conduction in the central ner-
vous system (CNS), it is essential for regulating motor, 
sensory and cognitive functions. Loss or alteration of 
sphingomyelin may affect the function of the nervous 
system, including aspects related to emotion, cognition 
and behaviour [10, 11]. Sphingomyelin is a key compo-
nent of the myelin sheath or resident cell plasma mem-
brane that regulates signal transduction, apoptosis, 
autophagy, senescence, necrosis and differentiation [12]. 
Sphingomyelin helps to maintain the integrity of the 
intestinal mucosa, thereby strengthening intestinal bar-
rier function. This helps prevent harmful substances from 
entering the blood circulation, reduces inflammation and 
immune responses and maintains intestinal health [13]. 
Therefore, sphingomyelin plays an important role in sup-
porting nervous system function, regulating the immune 
system, maintaining intestinal health and interacting 
with intestinal microorganisms.

The “brain-gut-microbiota axis” includes a wide range 
of communication networks between the brain, gut and 
microbiota [14]. Although the brain and intestine are two 
distant organs, they can play a very important role in the 
nervous system, immune system, and intestinal barrier 
and the influence of intestinal microorganisms through 
sphingomyelin [15].

Many recent studies have demonstrated a correlation 
between the gut microbiota and various ailments, includ-
ing inflammatory bowel disease, Parkinson’s disease, AD, 
type 2 diabetes, psoriasis, autism, anxiety, obesity, and 
schizophrenia [16, 17]. The majority of previous stud-
ies are case‒control studies, and it was challenging to 
ascertain both the exposure and outcome. Furthermore, 
in prospective studies, the association between sphingo-
myelin abundance and gut microbiota abundance could 
be influenced by several confounding variables. These 
include age, environment, dietary habits, and lifestyle 
[18, 19]. Given that these factors are difficult to control 
for in observational studies, their effect on the associa-
tion needs to be carefully considered. Therefore, causal 
inference between sphingomyelin and gut microbiota 
abundance is limited.

However, MR has emerged as a novel method for 
investigating the causal relationship between sphingo-
lipid levels and gut microbiota abundance. MR employs 
genetic variation as an instrumental variable (IV) of 
exposure for estimating the causal correlation between 
exposure and disease outcome [20]. As the homozygous 
genotypes passed from parents to offspring are randomly 
assigned and any association between genetic varia-
tion and outcome remains unaffected by common con-
founding factors, the causal sequence is justifiable [21]. 
This approach has frequently been employed to inves-
tigate causal connections between various diseases. In 
this study, the Open Genome Wide Association Study 
(GWAS) database (https://gwas.mrcieu.ac.uk/) of the 
Medical Research Council Integrative Epidemiology Unit 
(MRC-IEU) was used to obtain summary data from the 
GWAS of sphingomyelin and gut microbiota abundance. 
Two-sample MR analysis was performed to assess the 
causal relationship between sphingomyelin levels and gut 
microbiota abundance.

Materials and methods
Study design
Our analyses used publicly available GWAS total statisti-
cal data. Each of the GWASs included in this study was 
ethically approved by their respective institutions. Based 
on these data, we used a two-sample MR design with 
sphingomyelin levels as the exposure and gut microbiota 
abundance as the outcome, revealing convincing evi-
dence for a causal relationship between the two param-
eters. IVs were chosen using a strict set of inclusion and 
exclusion criteria, selecting only single nucleotide poly-
morphisms (SNPs) that were significantly correlated with 
sphingomyelin levels. Figure  1 provides an overview of 
the study.

Keywords  Sphingomyelin, Alzheimer's disease, Gut microbiota abundance, Causality, Mendelian randomization

https://gwas.mrcieu.ac.uk/


Page 3 of 12Wang et al. BMC Neurology          (2025) 25:191 

Data sources
All the data for this study were obtained from the MRC-
IEU OpenGWAS database (https://gwas.mrcieu.ac.uk/). 
One is related to the level of sphingomyelin [22], and the 
other is related to the abundance of the gut microbiota 
[23]. The GWAS data on sphingomyelin were all from 
blood samples of European races, and the GWAS pro-
vided strong evidence through MR, including 11,590,399 
IVS from 115,006 UK biobank participants. And it was 
measured by targeted high-throughput NMR metabo-
lomics from Nightingale Health in UK Biobank. During 
the analysis, sex, age, fasting status and genotyping batch 
were revised [24].

Information on gut microbiota abundance via GWAS 
was obtained through a previous meta-analysis that 
examined the relationship between genetic variation in 
human autosomes and gut microbiota abundance. The 
analysis incorporated sequencing profiles of 16  S ribo-
somal RNA genes and genotype data from 14,306 Euro-
pean individuals across 24 cohorts. The gut microbiota 
abundance in the initial study was classified into 257 taxa 
across six taxonomic levels: phylum [p], class [c], order 
[o], family [f ] genus [g] and species [s]. Unknown taxa 
were excluded from the results. The study included 211 
taxa from 9 phyla, 16 classes, 20 orders, 35 families, and 
131 genera. Species-level taxa, which had ambiguous or 
unclear annotations, were excluded from the analysis, 
with only a small number of clearly annotated species 

retained, but these were not analyzed separately. The 
conditions for analysis were determined by employing a 
microbial quantitative trait locus (mbQTL) map to iden-
tify genetic variants that influence the relative abundance 
of microbial taxa. Several hypervariable regions (V3-V4, 
V1-V2, V4) within the 16 S ribosomal RNA (rRNA) gene 
serve as primary areas for examining the composition of 
the gut microbiota [23].

Instrument variable selection
The selection of IVS for analysis must be closely 
related to the exposure factors to ensure the sound-
ness of the data and the precision of the outcomes. 
We performed quality checks on SNPs to obtain IVs 
that met three requirements: (1) The genetic varia-
tion associated with sphingomyelin levels, specifically 
SNPs, was obtained from the corresponding GWAS 
at the genome-wide significance level of p < 5 × 10− 8. 
Ensuring that there are no IVS with F values formula: 
(R2/ (R2 − 1)) × ((N − K − 1) /K) < 10 To ensure a 
robust correlation between IVS and exposure factors, it 
is necessary to consider certain factors. R2, which rep-
resents the exposure variance explained by the selected 
SNP, which represents the sample size, and k, which indi-
cates the number of IVSs included) [25, 26]; (2) To test 
the MR hypothesis, we estimated the linkage disequilib-
rium between SNPs based on 1000 European genome 

Fig. 1  The scheme of design and flowchart of this study
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groups as a reference population. We used independent 
SNPs as IVSs (SNPs without linkage disequilibrium, 
r2 < 0.001 and clumping window size = 10,000 kb); (3) We 
removed palindromic SNPs to prevent alleles from affect-
ing the causal relationship between sphingomyelin levels 
and gut microbiota abundance. The selection of these key 
variables ensured the reliability of our research findings.

Mendelian randomization analysis
Fixed or random effects inverse variance weighted (IVW) 
methods, weighted median estimation model (WME) 
methods, MR‒Egger regression and MR pleiotropic 
residual and outlier (MR-PRESSO) tests are well suited 
for estimating the potential causal link between sphin-
gomyelin levels and gut microbiota abundance [27–29]. 
We used the IVW approach as the key analysis because 
it provided the most correct effect estimates, and almost 
all MR analyses used this approach as the primary analy-
sis [30]. The IVW technique first uses the delta method 
and the Wald estimator to calculate the ratios of indi-
vidual SNPs prior to consolidating the calculated esti-
mates of each SNP to derive the primary causal estimates 
[31]. Cochran’s Q test was utilized to analyse heteroge-
neity within the chosen SNPs. If there was heterogeneity 
(p < 0.05), the random effect IVW technique was applied; 
otherwise, the random effect or fixed effect IVW tech-
nique was selected [32, 33]. Since the outcomes of the 
IVW technique are susceptible to effective instruments 
and potential pleiotropy effects, a sensitivity analysis 
was executed to assess the strength of the correlation. 
First, we utilize the weighted median approach to esti-
mate associations due to its greater reliability in pro-
viding causal effect estimates in the absence of effective 
tools. Even if up to 50% of the weight comes from invalid 
SNPs, WME can obtain robust results. Furthermore, the 
use of the MR-Egger reintroduction methodology can aid 
in evaluating causal associations and can test the poten-
tial level of pleiotropy. If the p value of the intersection 
does not exceed 0.05, there may be pleiotropy among the 
SNPs [34]. Third, we validated the outcomes of the IVW 
method using the MR-PRESSO approach, which can be 
used to detect and correct outliers as a whole to deter-
mine whether SNPs have possible outliers and obtain a 
corrected association knot after removing potential outli-
ers [29].

Statistical analysis
MR estimation performance was assessed using a web-
based calculation tool from Stephen Burgess. This study 
employed R software (version 4.3.1, R Statistical Com-
puting Foundation, Vienna, Austria) and TwoSampleMR 
(version 0.5.6) to conduct this two-sample MR analysis 
to investigate the association between sphingolipid lev-
els and gut microbiota abundance [35, 36]. In this study, 

five efficient MR analysis methods were employed: the 
inverse variance weighted (IVW) method, MR-Egger, 
weighted median, weighted mode, and simple mode 
methods. The IVW method serves as the primary MR 
analysis approach, with the other four methods typically 
utilized as supplementary methods [37, 38]. To address 
multiple testing, we applied a Bonferroni correction, set-
ting the significance threshold to 2.4e-4 (i.e., 0.05/211, 
where 211 represents the number of putative risk fac-
tors). P-values between 2.4e-4 and 0.05 were considered 
suggestive of potential associations. The power of MR to 
detect causal effects depends on the proportion of vari-
ance in the risk factor explained by the genetic variants 
used as instruments. Therefore, we estimated the study 
power at an α of 0.05 for each risk factor a priori.

Results
Selection of IVs
Based on the criteria for selecting IVs, 66 SNPs were used 
as instruments. The F-statistic for all IVs exceeded 10, 
demonstrating that our chosen SNPs had a robust impact 
on IVs without any sign of weak IV bias. The features of 
all the SNPs are given in Table 1 of Supplementary File 1.

MR analysis
According to the IVW method, sphingomyelin levels 
were significantly associated with the abundance of 12 
gut microbiota. Based on the hierarchical inclusion rela-
tionships among phylum, class, order, family, genus, and 
species, where a class is a subcategory of a phylum, we 
removed overlapping categories. For example, in the case 
of “Phylum Proteobacteria, Order Burkholderiales, Fam-
ily Alcaligenaceae,” we retained “Family Alcaligenaceae.” 
Ultimately, we identified 6 gut microbiota abundances 
related to sphingomyelin levels. The findings indicated 
a positive correlation between the level of sphingomy-
elin and the family Alcaligenaceae (p = 0.006, OR 95% 
CI = 1.109 [ 1.030–1.194]) and the species Ruminococcus 
callidus (p = 0.034, OR 95% CI = 1.217 [ 1.015–1.460]). 
Fungal abundance was negatively correlated with genus 
Flavonifractor (p = 0.026, OR 95% CI = 0.804 [ 0.663–
0.974]), genus Streptococcus (p = 0.014, OR 95% CI = 0.909 
[ 0.842–0.981]), species Bacteroides caccae (p = 0.037, OR 
95% CI = 0.870 [ 0.763–0.992]) and species Haemophilus 
parainfluenzae (p = 0.006, beta 95% CI = -0.269 [-0.462, 
-0.076]) (Table 1). Results on the traits of 211 Gut Micro-
biota Species are given in the Supplementary File 2. The 
MR data are presented in a scatter plot (Fig. 2), and the 
causal effect of sphingomyelin levels on the abundance of 
a single SNP in the gut microbiota is shown in the forest 
plot (Figs. 3 and 4).

The slope of the line indicates the causal relationship 
between the various MR techniques. Next, the MR‒
Egger and IVW tests were used to continue to examine 
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the heterogeneity of the results, and all P values > 0.05 
suggested that there was no heterogeneity in our results 
(Table  2). The Egger intercept was used to assess the 
horizontal pleiotropy between the IV, and the results 
showed no evidence of horizontal pleiotropy (Table  3). 
The results of the leave-one-out approach showed that 
certain individual SNPs could lead to deviations in terms 
of genetic prediction (Fig. 5). For the family Alcaligena-
ceae, we observed that two SNPs yielded significant Wald 
estimates. When these SNPs were excluded from the MR 
analyses, the MR estimate decreased but remained statis-
tically significant, suggesting that these SNPs are robust 
contributors to the association. This finding indicates 
that the association between the genetic variant and the 
outcome is not solely driven by these SNPs but is also 
supported by other SNPs within the family. Regarding the 
species Ruminococcus callidus, one of the SNPs exhibited 
a significant Wald estimate that was in the opposite direc-
tion of the overall MR estimate. This discrepancy may 
suggest the presence of horizontal pleiotropy or other 
genetic confounders influencing the association. Further-
more, when four SNPs were excluded from the analysis, 

the MR estimate for these SNPs became non-significant. 
Using leave-one-out sensitivity analysis confirmed the 
stability of our study results when systematically remov-
ing individual SNPs. However, no significant outliers or 
horizontal pleiotropy (P > 0.05) were found in our MR 
analysis using MR-PRESSO (Table 4).

Discussion
The gut microbiota is a complex ecosystem. Maintaining 
the balance of gut microbiota abundance in the body is 
important because it can not only mediate the interac-
tion between the human host and its environment but 
also mediate the balance between human health and dis-
ease [39]. Research on the gut microbiota is constantly 
developing. With the advancement of high-throughput 
sequencing technology, scholars have attained a more 
profound understanding of the variety and role of the gut 
microbiota. This research field has covered many aspects, 
including the role of microbes in neurodegenerative dis-
eases (such as AD and PD) [40, 41]; cardiovascular dis-
eases (such as hypertension, atherosclerosis, and heart 
failure) [42, 43]; metabolic diseases (such as obesity and 

Table 1  MR assessed the association between sphingomyelin levels and gut microbiota
Exposure Outcome Nsnp Method OR 95%CI P
Sphingomyelin levels family Alcaligenaceae 50 MR Egger 1.223 1.056, 1.415 0.01

Weighted median 1.125 1.003, 1.261 0.044
Inverse variance weighted 1.109 1.030, 1.194 0.006
Simple mode 1.095 0.890, 1.347 0.395
Weighted mode 1.139 1.010, 1.285 0.04

species Ruminococcus callidus 49 MR Egger 1.114 0.777, 1.597 0.561
Weighted median 1.080 0.808, 1.443 0.605
Inverse variance weighted 1.217 1.015, 1.460 0.034
Simple mode 1.001 0.593, 1.690 0.996
Weighted mode 1.001 0.720, 1.393 0.994

genus Flavonifractor 50 MR Egger 0.697 0.476, 1.023 0.071
Weighted median 0.807 0.598, 1.090 0.162
Inverse variance weighted 0.804 0.663, 0.974 0.026
Simple mode 0.917 0.536, 1.571 0.755
Weighted mode 0.756 0.533, 1.073 0.124

genus Streptococcus 50 MR Egger 0.947 0.813, 1.102 0.485
Weighted median 0.962 0.857, 1.079 0.503
Inverse variance weighted 0.909 0.842, 0.981 0.014
Simple mode 0.947 0.765, 1.172 0.619
Weighted mode 0.941 0.836, 1.060 0.322

species Haemophilus parainfluenzae 52 MR Egger 0.875 0.593, 1.290 0.504
Weighted median 0.829 0.626, 1.099 0.192
Inverse variance weighted 0.764 0.630, 0.927 0.006
Simple mode 0.931 0.569, 1.524 0.777
Weighted mode 0.906 0.665, 1.233 0.533

species Bacteroides caccae 51 MR Egger 0.827 0.635, 1.076 0.164
Weighted median 0.890 0.742, 1.067 0.207
Inverse variance weighted 0.870 0.763, 0.992 0.037
Simple mode 0.957 0.689, 1.329 0.796
Weighted mode 0.941 0.771, 1.149 0.555
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diabetes) [44]; gastrointestinal diseases (such as inflam-
matory bowel disease) [45] and a variety of other cancers, 
including non-small cell lung cancer and hepatocellular 
carcinoma [46]. In addition to brain-gut interactions, 
there are many recent studies on probiotics and prebiot-
ics and their application in personalized medicine [47]. 

Understanding the abundance of gut microbiota is cru-
cial for comprehending human health and disease mech-
anisms and creating novel therapeutic approaches. This 
field will continue to make important breakthroughs in 
the fields of medicine and health.

Fig. 2  Scatterplot of the results of MR analysis of the association between sphingomyelin levels and gut microbiota abundance. (A) family Alcaligenaceae, 
(B) species Ruminococcus callidus, (C) genus Flavonifractor, (D) genus Streptococcus, (E) species Haemophilus parainfluenzae, (F) species Bacteroides caccae. 
The gradient of the line indicates the causal relationship between the various MR techniques
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An in-depth study of the gut microbiota revealed that 
the predictive potential of the gut microbiota is surpris-
ing. The gut microbiota may serve as a novel biomarker 
to predict the response to anti-PD-1 immunotherapy, as 
Jumin Huang and colleagues reported [48]. Xiaqing Yu, 
Wen Jiang, Russell Oliver Kosik and other researchers 
have shown that thyroid cancer can develop according 
to changes in intestinal microbial richness and diver-
sity, and probiotics and prebiotics can regulate intesti-
nal microecology to treat thyroid cancer [49]. Carmen 
Barrio et al. reviewed the associations between the gut 
microbiota and AD, PD, etc., and illustrated the benefits 
of supplementing probiotics and prebiotics for human 
cognition [50]. Therefore, based on the individual’s gut 
microbiota abundance, clinicians can not only assess the 
individual’s risk of developing diseases but also provide 

individualized dietary advice to promote gut health 
and overall health according to the composition of the 
patient’s microorganisms to select and adjust the drug 
dose to improve the therapeutic effect of a disease. It is 
also possible to improve the microbial composition by 
predicting potential problems with an individual’s gut 
microbiota abundance. Of course, researchers can also 
study and develop new treatments based on the role of 
gut microbes in diseases, such as fecal transplantation 
and microbiota interventions. Although the predictive 
potential of gut microbiota abundance is very promis-
ing, it still faces challenges, including our understanding 
of the causal relationship between microbes and health, 
standardized analysis methods and data privacy issues. 
However, this field is still developing rapidly and will 

Fig. 4  The forest plot demonstrated the causal effects between sphingomyelin levels and gut microbiota abundance

 

Fig. 3  The forest plot demonstrated the causal impact of sphingomyelin levels on the gut microbiota for a particular SNP. (A) family Alcaligenaceae; (B) 
species Ruminococcus callidus; (C) genus Flavonifractor; (D) genus Streptococcus; (E) species Haemophilus parainfluenzae; (F) species Bacteroides caccae
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continue to result in more innovations to personalized 
medicine and health management in the next few years.

To the best of our knowledge, this was the first MR 
study to assess whether there was a causal relation-
ship between sphingomyelin levels and gut microbi-
ota abundance. Genetic variations strongly associated 
with sphingomyelin levels were identified in the GWAS 
MRC-IEU OpenGWAS database. Based on genetic data 
from 115,006 Europeans, we found a causal relationship 
between sphingomyelin levels and the abundance of the 
six gut microbiota. Recent studies have shown that dis-
orders of sphingomyelin metabolism are associated with 
AD, and the most commonly identified pathological 
events in AD are amyloid plaques and neurofibrillary tan-
gles [51]. Moreover, abundant gut microbiota can secrete 
significant amounts of amyloid and lipopolysaccharide, 
which may contribute to the production of inflammatory 

cytokines associated with AD pathogenesis. Bifidobac-
terium species (probiotics) can enhance epithelial junc-
tions, protect mucosal barrier function, protect intestinal 
mucosal integrity, reduce intestinal permeability, and 
reduce damage to the nervous system after inflammatory 
factors enter the blood circulation [52]. Harach and other 
researchers observed that with increasing Bacteroidetes 
abundance, the abundance of Firmicutes and Proteobac-
teria decreased significantly in AD mice and wild-type 
mice of the same age [53]. In addition, in a two-sample 
MR study, we were surprised to find that sphingomyelin 
levels were altered in the same way as gut microbiota 
abundance was. With increasing sphingomyelin levels, 
the abundances of two kinds of gut microbiota, the fam-
ily Alcaligenaceae and the species Ruminococcus cal-
lidus, also increased. When the level of sphingomyelins 
decreased, the abundances of 4 gut microbiota, includ-
ing species Haemophilus parainfluenzae and species 
Bacteroides caccae, increased. Species Ruminococcus are 
widespread gut bacteria that are ubiquitous in the human 
gut. It is capable of producing advantageous metabolites, 
including short-chain fatty acids, which may be advanta-
geous to brain health. In individuals with AD, the abun-
dances of Ruminococcus callidus is lower. These findings 
imply that Ruminococcus callidus could play a protective 
role in the development and progression of AD through 
the “gut microbiota abundance-gut-brain” connection 
[54–56]. Recent research has suggested a possible con-
nection between specific types of Streptococcus, such 
as Streptococcus pyogenes and Streptococcus suis, and 
the development of AD. DNA from Streptococcus bac-
teria has been detected in the brain tissue of individuals 
infected with AD. These gut microbiota may invade the 
brain through various means, including the blood, caus-
ing inflammation and neuronal damage [57]. The genus 
Flavonifractor has also been found to be increased in 
elderly individuals with cognitive impairment [58].

In the study of Dong-oh Seo et al., regulating the gut 
microbiota appears as a promising strategy to slow the 
progression of AD. The abundance of gut microbiota 
directly reflects the diversity and quantity of microbes 
in the intestine. These microbes can influence the host 
through their metabolites, impacting the immune sys-
tem and overall health. The ways in which gut microbiota 
affect host health are intricate, involving modulation of 
the immune system, synthesis of neurotransmitters, and 
production of metabolites [59–61]. Therefore, directly 
measuring microbiota abundance provides a compre-
hensive understanding of their potential effects on dis-
ease states. The interaction between gut microbiota and 
the brain is considered part of the gut-brain axis. Studies 
indicate that gut microbiota can influence neurological 
functions and inflammatory responses through metabo-
lites such as short-chain fatty acids, which are relevant 

Table 2  Assessment of heterogeneity using different methods 
(P > 0.05)
Exposure Outcome Method Co-

chran’s 
Q

P 
value

Sphingo-
myelin 
levels

family 
Alcaligenaceae

MR Egger 31.035 0.973
Inverse variance 
weighted

33.333 0.958

species Rumino-
coccus callidus

MR Egger 46.432 0.496
Inverse variance 
weighted

46.746 0.524

genus 
Flavonifractor

MR Egger 47.854 0.479
Inverse variance 
weighted

48.563 0.491

genus 
Streptococcus

MR Egger 50.538 0.374
Inverse variance 
weighted

50.94 0.397

species 
Haemophilus 
parainfluenzae

MR Egger 52.466 0.379
Inverse variance 
weighted

53.123 0.392

species 
Bacteroides
caccae

MR Egger 54.595 0.27
Inverse variance 
weighted

54.81 0.297

Table 3  Directional horizontal Pleiotropy assessed by 
intercept term in MR Egger regression of the association 
betweensphingomyelin levels and gut microbiota abundance 
(P > 0.05)
Exposure Outcome Egger 

intercept
Se P 

value
Sphingo-
myelin 
levels

family Alcaligenaceae -0.006 0.004 0.136
species Ruminococcus 
callidus

0.005 0.009 0.578

genus Flavonifractor 0.008 0.010 0.404
genus Streptococcus -0.002 0.004 0.54
species Haemophilus 
parainfluenzae

-0.008 0.010 0.432

species Bacteroides caccae 0.003 0.007 0.662



Page 9 of 12Wang et al. BMC Neurology          (2025) 25:191 

to AD pathogenesis. Modulating microbiota through 
dietary adjustments, probiotics, prebiotics, or fecal 
microbiota transplantation represents potential thera-
peutic avenues to improve symptoms and pathologi-
cal processes in AD patients [62, 63]. Therefore, we can 
detect changes in sphingomyelin levels in the early stage 
by examining the gut microbiota for early diagnosis and 
treatment of AD.

However, Clinical trials investigating the potential 
therapeutic role of gut microbiota in AD are still in early 
stages. While preliminary research and animal models 
offer support, further large-scale, randomized controlled 
trials in humans are necessary to validate and assess 
efficacy. This includes deeper insights into the exact 
role of microbiota in AD pathogenesis and determin-
ing how specific microbial communities or metabolites 
impact disease progression and symptoms. Additionally, 

evaluating the long-term effectiveness and safety of dif-
ferent interventions, such as dietary modifications and 
probiotic therapies, remains crucial.

The key benefit of this study is the realization that there 
is a causal relationship between the level of sphingomy-
elin and the abundance of the gut microbiota at the gene 
level. The content of sphingomyelin can be determined 
by the abundances of these gut microbiota constituents 
for early diagnosis and treatment of AD. However, our 
study has several limitations. First, it should be noted 
that the GWAS summary data used in our study were 
only from European patients. In turn, this may have led 
to biased estimations and the potential lack of universal 
applicability. Second, our sample size may not be large 
enough. The more complete GWAS genome sequencing 
analysis data that can be obtained, the more precise and 
reliable the outcomes will be. Thirdly, MR analysis may 

Table 4  MR-PRESSO analysis for the association between betweensphingomyelin levels and gut microbiota abundance. (P > 0.05)
Exposure Outcome MR Analysis Causal estimate SD T P-value RSSobs Global

test P-value
Sphingomyelin levels family Alcaligenaceae MR-PRESSO 0.106 0.031 3.462 0.001 38.591 0.959

species Ruminococcus callidus 0.189 0.090 2.086 0.421 51.210 0.499
genus Flavonifractor -0.204 0.961 -2.121 0.039 51.860 0.503
genus Streptococcus -0.942 0.038 -2.511 0.015 57.165 0.437
species Haemophilus parainfluenzae -0.249 0.010 -2.490 0.016 59.648 0.349
species Bacteroides caccae -0.142 0.067 -2.124 0.038 60.286 0.303

Fig. 5  Leave-one-out analysis about sphingomyelin levels and gut microbiota abundance. (A) family Alcaligenaceae; (B) species Ruminococcus callidus; 
(C) genus Flavonifractor; (D) genus Streptococcus; (E) species Haemophilus parainfluenzae; (F) species Bacteroides caccae
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be influenced by various biases, so we employed multiple 
models to test the MR assumptions. Due to its biological 
plausibility and multi-stage statistical process, it may be 
overly conservative and could potentially miss gut micro-
biota abundances causally related to phospholipid levels 
when applying strict multiple testing corrections. Finally, 
although we found strong and suggestive evidence for an 
association between sphingolipid levels and the abun-
dance of six gut microbiota abundance after applying 
Bonferroni correction to account for multiple testing, we 
cannot rule out the possibility that these findings may 
represent false positives. We only analyzed the genetic 
factors of phospholipid levels and the abundance of six 
gut microbiota abundance, so caution should be exer-
cised in interpreting the results. Gut microbiota abun-
dance can be influenced by various environmental factors 
such as dietary habits, exercise, or acquired health condi-
tions, which generally have low heritability. Therefore, we 
acknowledge our inability to determine whether genetic 
tools are associated with these confounding factors.

Conclusions
In conclusion, we conducted an in-depth study of the 
causal relationship between the level of sphingolipids and 
the abundance of gut microbiota using two-sample MR. 
On the basis of the findings of previous studies and the 
present paper, we found that alterations in sphingomy-
elin can cause changes in the abundances of the six gut 
microbiota abundances. Therefore, we posit that such 
strains have the potential to serve as novel biomark-
ers, affording valuable insights into the prevention, early 
diagnosis and treatment of AD.
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