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Abstract 

Background  COVID-19 is a disease that affects people globally. Beyond affecting the respiratory system, COVID-
19 patients are at an elevated risk for both venous and arterial thrombosis. This heightened risk contributes 
to an increased probability of acute complications, including acute myocardial infarction (AMI) and acute ischemic 
stroke (AIS). Given the unclear relationship between COVID-19, AMI, and AIS, it is crucial to gain a deeper understand-
ing of their associations and potential molecular mechanisms. This study aims to utilize bioinformatics to analyze 
gene expression data, identify potential therapeutic targets and biomarkers, and explore the role of immune cells 
in the disease.

Methods  This study employed three Gene Expression Omnibus (GEO) datasets for analysis, which included data 
on COVID-19, AMI and AIS. We performed enrichment analysis on the co-DEGs for these three diseases to clarify gene 
pathways and functions, and also examined the relationship between co-DEGs and immune infiltration. Machine 
learning techniques and protein–protein interaction networks (PPI) were used to identify hub genes within the co-
DEGs. Finally, we employed a dual validation strategy integrating independent GEO datasets and in vitro experiments 
with human blood samples to comprehensively assess the reliability of our experimental findings.

Results  We identified 88 co-DEGs associated with COVID-19, AMI and AIS. Enrichment analysis results indicated 
that co-DEGs were significantly enriched in immune inflammatory responses related to leukocytes and neutrophils. 
Immune infiltration analysis revealed significant differences in immune cell populations between the disease group 
and the normal group. Finally, genes selected through machine learning methods included: CLEC4E, S100A12, 
and IL1R2. Based on the PPI network, the top ten most influential DEGs were identified as MMP9, TLR2, TLR4, ITGAM, 
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S100A12, FCGR1A, CD163, FCER1G, FPR2, and CLEC4D. The integration of the protein–protein interaction (PPI) network 
with machine learning techniques facilitated the identification of S100A12 as a potential common biomarker for early 
diagnosis and a therapeutic target for all three diseases. Ultimately, validation of S100A12 showed that it was consist-
ent with our experimental results, confirming its reliability as a biomarker. Moreover, it demonstrated good diagnostic 
performance for the three diseases.

Conclusion  We employed bioinformatics methods and machine learning to investigate common diagnostic bio-
markers and immune infiltration characteristics of COVID-19, AMI and AIS. Functional and pathway analyses indicated 
that the co-DEGs were primarily enriched in immune inflammatory responses related to leukocytes and neutrophils. 
Through two machine learning approaches and the PPI network, and subsequent validation and evaluation, we 
identified S100A12 as a potential common therapeutic target and biomarker related to immune response that may 
influence these three diseases.

Keywords  COVID-19, Blood clotting abnormality, Bioinformatics, Biomarker, Machine learning, Immune infiltration

Introduction
The outbreak of the COVID-19 virus in 2019 was a global 
event that affected nearly all of humanity. Due to the 
lack of specific symptomatic treatments, it prompted the 
global medical community to delve deeply into its patho-
physiological mechanisms. However, the virus continues 
to spread globally, driven by the severe acute respira-
tory syndrome coronavirus 2 (SARS-CoV-2), commonly 
known as COVID-19. Clinically, it primarily presents 
as lung infections and various respiratory symptoms. In 
severe instances, the condition can escalate to acute res-
piratory distress syndrome (ARDS) [1].

In COVID-19 patients, in addition to respiratory sys-
tem impairment, researchers have also observed severe 
complications related to the cardiovascular and cer-
ebrovascular systems [2, 3]. COVID-19 patients face an 
elevated risk of venous and arterial thrombosis, which 
in turn raises the likelihood of acute complications, 
including acute myocardial infarction (AMI) and acute 
ischemic stroke (AIS) [4, 5]. Many studies have indi-
cated an increased incidence of AMI and AIS in the 
COVID-19 population, particularly among the elderly, 
who exhibit elevated levels of D-dimer and abnormal 
fibrinogen levels. This group also has a higher mortality 
rate compared to other populations [2, 6]. The damage to 
the cardiovascular and cerebrovascular systems is associ-
ated with coagulation abnormalities leading to thrombo-
sis. The mechanisms may involve inflammation-induced 
endothelial injury, the release of cytokines, activation of 
tissue factor (TF), complement system activation, and 
the presence of antiphospholipid antibodies [7]. This 
coagulation abnormality in the COVID-19 population, 
particularly among the elderly, is prone to result in the 
occurrence of acute diseases, especially those associated 
with poor prognosis [2, 3, 8].

Given the ambiguous connections between COVID-19, 
acute myocardial infarction (AMI), and acute ischemic 
stroke (AIS), it is essential to explore their relationships 

and the underlying molecular mechanisms more thor-
oughly. Although numerous studies have explored the 
relationship between COVID-19 and coagulation-related 
disorders, the existing literature is largely confined to 
analyses of single diseases or associations between two 
diseases, lacking a comprehensive exploration of the 
common mechanisms underlying all three conditions. 
This study aims to utilize bioinformatics to analyze gene 
expression data, exploring the common gene expression 
changes among these diseases and identifying poten-
tial therapeutic targets and biomarkers. Through this 
research, we hope to provide scientific evidence for the 
treatment and prevention strategies of COVID-19 and 
its related complications, thereby improving clinical out-
comes for patients and reducing disease risk.

This study integrated three Gene Expression Omnibus 
(GEO) datasets for analysis: GSE171110, GSE66360, and 
GSE58294. Initially, we employed bioinformatics meth-
ods to identify differentially expressed genes (DEGs) in 
each dataset and to pinpoint the common DEGs (co-
DEGs) among these three diseases. Subsequently, we 
conducted enrichment analysis on the co-DEGs to clarify 
gene pathways and functions, and examined the relation-
ship between co-DEGs and immune infiltration. Finally, 
machine learning techniques and protein–protein inter-
action networks (PPI) were used to identify hub genes 
within the co-DEGs. Our research provides new perspec-
tives for the early diagnosis and treatment of the three 
diseases. Compared to existing studies, this work not 
only fills the gap in research on common mechanisms 
across multiple diseases but also lays a theoretical foun-
dation for developing combined therapeutic strategies 
targeting COVID-19, AMI, and AIS.

Materials and methods
Collection of the datasets
To analyze the potential relationships and therapeutic 
targets among COVID-19, AMI, and AIS, we utilized 
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three GEO databases to obtain microarray and RNA-seq 
datasets. The GEO dataset for COVID-19 is GSE171110 
(https://​www.​ncbi.​nlm.​nih.​gov/​geo/​query/​acc.​cgi?​acc=​
GSE17​1110)​,which includes transcriptomic profiles 
from 44 COVID-19 samples and 10 healthy control sam-
ples. GSE171110 is based on the Illumina HiSeq 2500 
(Homo sapiens) (GPL16791) platform for RNA sequenc-
ing analysis. The GEO dataset for AMI is GSE66360 
(https://​www.​ncbi.​nlm.​nih.​gov/​geo/​query/​acc.​cgi?​acc=​
GSE66​360)​,compr​ising trans-criptomic profiles from 
49 AMI patients and 50 healthy control samples, based 
on the Affymetrix Human Genome U133 Plus 2.0 Array 
(GPL570) platform. Similarly, the dataset for AIS is 
GSE58294 (https://​www.​ncbi.​nlm.​nih.​gov/​geo/​query/​
acc.​cgi?​acc=​GSE58​294), which includes gene expres-
sion profiles from 69 patients with cardioembolic stroke 
(CES) and 23 healthy individuals. Table  1 provides the 
essential information for the three datasets. We also 
selected three additional datasets as validation datasets. 
The COVID-19 validation dataset is GSE152418, which 
includes transcriptomic profiles of 17 COVID-19 sam-
ples and 17 healthy control samples. The AMI validation 
dataset is GSE48060, which includes transcriptomic pro-
files of 31 AMI samples and 21 healthy control samples. 
Similarly, the AIS dataset is GSE16561, which includes 
gene expression profiles of 39 AIS patients and 24 healthy 
controls.

Identification of the DEGs and co‑DEGs for COVID‑19, AMI 
and AIS.
Based on the research design, the samples were divided 
into three groups: COVID-19, AMI, and AIS. The R 
package limma was used to perform differential expres-
sion analysis for each group, with a threshold for differ-
entially expressed genes (DEGs) set at log2(Fold Change) 
> ± 1.5 and p value < 0.05. DEGs were classified into 
upregulated and downregulated genes according to the 
criteria of log2(Fold Change) > 1.5 and log2(Fold Change) 
< −1.5, respectively [9].

To identify co-DEGs among the three groups, we inter-
sected the upregulated and downregulated DEGs from 
each group. A Venn diagram was then generated to visu-
alize the overlapping DEGs. The R package ggplot2 was 
used to create volcano plots, while the VennDiagram 

package was utilized to generate the Venn diagram [10, 
11].

GO and KEGG enrichment analysis
To determine the potential functions and pathways of 
the co-DEGs, we performed GO and KEGG analyses and 
predictions [12, 13]. GO can predict the possible func-
tions of genes, and after screening the co-DEGs, we clas-
sified them according to three criteria: Biological Process 
(BP), Molecular Function (MF), and Cellular Component 
(CC). The KEGG database includes pathways that repre-
sent molecular interactions, reactions, and relationships, 
allowing enrichment analysis to explain the functional 
profiles of co-DEGs from the perspective of influencing 
specific biological pathways. We employed the R package 
clusterProfiler for GO and KEGG pathway enrichment of 
the co-DEGs [14].

Immune infiltration analysis
To assess the composition and abundance of 22 immune 
cell types in the gene expression data, we utilized the 
CIBERSORT method, which employs linear support 
vector regression to deconvolute the transcriptomic 
expression matrix [15]. This approach explored whether 
the abundance of relevant immune cells increased or 
decreased during the progression of the diseases com-
pared to normal individuals, aiding in further investiga-
tions into the relationships among COVID-19, AMI, and 
AIS.

Identification of hub genes
To investigate early biomarkers and potential therapeu-
tic targets for COVID-19, AMI, and AIS, we conducted 
random forest and XGBoost analyses [16–18]. Random 
forest is an ensemble algorithm among various machine 
learning methods, based on multiple decision trees [19]. 
It predicts the final outcome by aggregating the results 
of each decision tree, resulting in high accuracy and reli-
ability. In this study, we implemented the Random Forest 
algorithm using the rfPermute package. We set the num-
ber of decision trees (ntree) to 1000 to enhance the mod-
el’s stability and calculated feature importance based on 
accuracy decrease and Gini impurity by setting impor-
tance = TRUE. To evaluate the statistical significance 

Table 1  The three datasets and their characteristics and analysed measurements in this study

Disease name GEO accession GEO platform Total DEGs count Up regulated DEGs 
count

Down 
regulated 
DEGs count

COVID-19 GSE171110 GPL16791 6588 3090 3498

AMI GSE66360 GPL570 1632 833 799

CES GSE58294 GPL570 824 754 70

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE171110),which
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE171110),which
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE66360),comprising
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE66360),comprising
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE58294
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE58294
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of feature importance, we performed 1000 permutation 
tests (nrep = 1000). To address sample imbalance, we 
employed stratified sampling during the training process, 
ensuring proportional representation of each class in the 
training set. On the other hand, XGBoost is a predictive 
algorithm that integrates small predictive models gener-
ated at each step into a larger predictive model. For the 
XGBoost algorithm, we utilized the XGBoost package in 
R with key parameters tailored for multi-class classifica-
tion. We chose a tree-based model (booster =’gbtree’) 
and limited the maximum depth of each tree to 6 (max_
depth = 6) to prevent overfitting. The learning rate (eta) 
was set to 0.5 to balance convergence speed and accuracy. 
Additionally, to further identify hub genes, we examined 
the known and predicted interactions between proteins 
in the STRING database (version 12.0, https://​cn.​string-​
db.​org) and used this information to construct a PPI net-
work involving the co-DEGs. After exploring the protein 
interaction relationships, we visualized the network using 
Cytoscape software (version 3.10.3, https://​cytos​cape.​
org) and selected the top 10 nodes as hub genes [20].

Verification and Evaluation of Hub Gene
After preprocessing the data from the three validation 
datasets, we used the ggboxplot and ggpubr packages 
in R to create box plots, visually illustrating the expres-
sion differences of S100 A12 between the disease groups 
and the control groups [21, 22]. To evaluate the diag-
nostic performance of S100 A12 as a biomarker for the 
three diseases, we performed ROC curve analysis using 
the pROC package in R and calculated the area under the 
curve (AUC) along with its 95% confidence interval (CI) 
[23].

Human Blood Sample Collection
Blood samples from 5 patients each with COVID-19, 
AMI, and AIS hospitalized at the Cardiovascular and 
Cerebrovascular Hospital of the General Hospital of 
Ningxia Medical University in March 2025 were col-
lected. The samples were stored at −80 °C prior to extrac-
tion. This study was approved by the Medical Research 
Ethics Review Committee of the General Hospital of 
Ningxia Medical University (Approval No.: KYLL-2025–
0941). The basic information of the patients is provided 
in Table 2.

QRT‑PCR
Total RNA extraction was performed using TRIzol rea-
gent, followed by quantification and purity assessment 
of the extracted RNA. Subsequently, RNA was reverse-
transcribed into cDNA according to the manufactur-
er’s protocol. Using cDNA as the template, QRT-PCR 
experiments were conducted to monitor the expression 

levels of target genes through real-time fluorescence sig-
nals. Data analysis was performed using the 2-△△CT 
method. The primer sequences used in the experiments 
are detailed in Table 3.

Statistical analysis
In this study, we conducted statistical analyses using R. 
Independent sample t-tests were used to determine sta-
tistical significance between groups. We performed all 
bioinformatics analyses with R packages of R software. 
Statistics were considered significant when P < 0.05, 
whereas P > 0.05 was not considered significant [24].

Result
Identification of differentially expressed genes
According to our criteria for screening DEGs (log2 Fold 
Change > 1.5 and adjusted p value < 0.05), the COVID-
19 dataset GSE171110 identified 6,588 DEGs, includ-
ing 3,090 upregulated genes and 3,498 downregulated 
genes. In GSE66360, 1,632 DEGs were identified (833 

Table 2  Basic information on patients used for QRT-PCR 
validation

Disease name Gender Age Complications Time of 
onset(day)

AMI-1 Male 58 CHD、Hypertension 5

AMI-2 Male 49 CHD 3

AMI-3 Female 38 CHD 4

AMI-4 Male 58 Hypertension, T2DM 1

AMI-5 Female 60 CHD, Hypertension 1

AMI-6 Male 72 CHD 1

COVID-19–1 Male 80 CHD, Hypertension 5

COVID-19–2 Male 79 Hypertension 1

COVID-19–3 Female 70 Pneumonia, CHD 4

COVID-19–4 Male 69 Hypertension, T2DM 8

COVID-19–5 Male 91 Pneumonia, CHD 5

AIS-1 Male 57 Non 2

AIS-2 Male 80 T2DM 3

AIS-3 Female 60 Hypertension, T2DM 8

AIS-4 Male 82 Hypertension 5

AIS-5 Male 62 T2DM 1

CHD: Coronary Heart Disease; T2DM: Type 2 Diabetes Mellitus

Table 3  Primer sequences for QRT-PCR

Primer Name Primer Sequence (5’to3’)

S100 A12-F GAG​CAT​CTG​GAG​GGA​ATT​GT

S100 A12-R CTG​CTT​CAG​CTC​ACC​CTT​AG

18S rRNA-F GTA​ACC​CGT​TGA​ACC​CCA​TT

18S rRNA-R CCA​TCC​AAT​CGG​TAG​TAG​CG

https://cn.string-db.org
https://cn.string-db.org
https://cytoscape.org
https://cytoscape.org
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upregulated and 799 downregulated), while GSE58294 
identified 824 DEGs (754 upregulated and 70 downregu-
lated). Figure 1 shows volcano plots for COVID-19, AMI, 
and AIS, with red and blue points representing upregu-
lated and downregulated genes, respectively (Fig. 1A–C). 
We identified 88 common DEGs among GSE171110, 
GSE66360, and GSE58294 (Fig.  1D). The results of the 
differential expression analysis suggest that there are cer-
tain shared mechanisms and interconnections among 
COVID-19, AMI, and AIS.

GO and KEGG enrichment analysis
GO analysis includes Biological Process (BP), Cellular 
Component (CC) and Molecular Function (MF), with 
the GO database selected as the annotation source. Fig-
ure 2A displays the top 5 GO terms for BP, CC and MF. 
Table 4 presents the top 10 terms in each category for 
BP, CC and MF. The DEGs were significantly enriched 
in immune inflammatory responses related to leuko-
cytes (BP), granules and granule membranes (CC), 

Fig.1  Volcano plots exhibit DEGs of (A)COVID-19, (B)AMI and (C)AIS (CES). Red for up-regulated and green for down-regulated. (D)The Venn 
diagram depicts the co-DEGs among GSE171110(COVID-19), GSE66360(AMI) and GSE58294(AIS). The results showed that they had a total of 88 
co-DEGs
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and receptors (MF). These enrichments are linked to 
immune therapy-related functions.

KEGG pathway analysis identified the top 10 pathways, 
including tuberculosis, transcriptional dysregulation in 
cancer, hematopoietic cell lineage, amoebiasis, formation 
of neutrophil extracellular traps, leishmaniasis, phago-
some, hepatitis B, legionellosis, and acute myeloid leu-
kemia. The bubble chart in Fig.  2B lists the potentially 
enriched pathways for the co-DEGs. For a more detailed 
illustration, the pathway enrichment analysis is presented 
in Table 5.

Immune infiltration
Applying the genetic data from the three groups of 
COVID-19, AMI and AIS, the correlation between 22 
types of immune cells and the disease group and the nor-
mal group was calculated by the CIBERSORT algorithm, 
respectively. Figure  3A shows a box-and-line plot com-
paring immune cell expression between the COVID-19 
(yellow) and HC (blue) groups. Certain immune cells, 
such as Dendritic.cells.resting, Neutrophils, T.cells.CD4.
memory.resting, Macrophages.M0, and B.cells.memory, 
showed significantly different infiltration proportions 
in the COVID-19 group compared to the HC group. 

These cells may play key roles in COVID-19 pathology. 
Figure  3B is a stacked bar graph to show the composi-
tion of immune cells in HC group and disease group. 
Different colours represent different types of immune 
cells. Observing the significant difference in the com-
position of immune cells in HC and COVID-19 groups, 
certain immune cells may play a more prominent role 
in the COVID-19 immune response. Figure  4 presents 
an immune heatmap matrix illustrating the correlations 
between various types of immune cells. In this matrix, red 
signifies a positive correlation, with darker shades indi-
cating stronger correlations. Conversely, blue represents 
negative correlations, where darker hues indicate a more 
substantial negative relationship. White indicates a weak 
or no significant correlation. From the graph, it can be 
concluded that there are significant positive correlations 
between certain immune cells, such as Mast cells acti-
vated and Neutrophils, T cells follicular helper and NK 
cells activated. There is a significant negative correlation 
between certain immune cells, for example, Dendritic 
cells esting and Neutrophils, Plasma cells and T cells CD4 
memory resting show a significant negative correlation. 
The synergistic and antagonistic roles of these cells in the 
immune response together participate in disease-specific 

Fig.2  (A)The bar graphs of the ontological analysis of the co-DEGs among COVID-19, AMI and AIS(CES). BP, biological progress; CC, cellular 
component; MF, molecular function. (B)Bubble graphs indicate the results for KEGG analysis based on the co-DEGs among COVID-19, AMI and AIS
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Table 4  Ontological analysis of co-DEGs among COVID-19, AMI and AIS (CES)

GO ID ONTOLOGY Description p.adjust Genes Ggg geneID

GO:0002366 BP leukocyte activation involved in immune 
response

5.53E-05 GAB2/CLEC4D/FCER1G/DYSF/CLEC4E/ANXA3/
CD177/ITGAM/SEMA4 A/TLR4/CCR6

GO:0002263 BP cell activation involved in immune response 5.53E-05 GAB2/CLEC4D/FCER1G/DYSF/CLEC4E/ANXA3/
CD177/ITGAM/SEMA4 A/TLR4/CCR6

GO:0002274 BP myeloid leukocyte activation 5.53E-05 S100 A12/TLR2/GAB2/CLEC4D/FCER1G/DYSF/
ANXA3/CD177/ITGAM/TLR4

GO:0042742 BP defense response to bacterium 0.000417022 S100 A12/TLR2/CLEC4D/FCER1G/CLEC4E/ANXA3/
FPR2/FCGR1 A/SLPI/TLR4/HP

GO:0002283 BP neutrophil activation involved in immune 
response

0.000487054 FCER1G/ANXA3/CD177/ITGAM

GO:0002888 BP positive regulation of myeloid leukocyte medi-
ated immunity

0.000505654 FCGR1 A/CD177/ARG1/ITGAM

GO:0002699 BP positive regulation of immune effector process 0.00058543 GAB2/SLC7 A5/CD55/FCGR1 A/FFAR2/CD177/
ARG1/ITGAM/TLR4

GO:0002275 BP myeloid cell activation involved in immune 
response

0.000964429 GAB2/FCER1G/DYSF/ANXA3/CD177/ITGAM

GO:0002697 BP regulation of immune effector process 0.001248229 IRAK3/GAB2/SLC7 A5/CD55/FCGR1 A/FFAR2/
CD177/ARG1/ITGAM/TLR4

GO:0002886 BP regulation of myeloid leukocyte mediated 
immunity

0.001248229 GAB2/FCGR1 A/CD177/ARG1/ITGAM

GO:0070820 CC tertiary granule 3.03E-20 QPCT/CLEC4D/FCER1G/LRG1/MMP9/MGAM/CD55/
MCEMP1/FPR2/SLC2 A3/SIGLEC5/TNFAIP6/TIMP2/
ORM1/CD177/ITGAM/CYSTM1/TCN1/HP

GO:0042581 CC specific granule 1.48E-14 QPCT/CLEC4D/LRG1/ANXA3/MCEMP1/FPR2/SLC2 
A3/TIMP2/ORM1/CD177/ARG1/SLPI/ITGAM/TCN1/
HP

GO:0070821 CC tertiary granule membrane 2.84E-11 CLEC4D/FCER1G/MGAM/MCEMP1/FPR2/SLC2 A3/
SIGLEC5/CD177/ITGAM/CYSTM1

GO:0030667 CC secretory granule membrane 1.47E-10 TLR2/CLEC4D/FCER1G/MGAM/CD55/VNN1/
MCEMP1/FPR2/SLC2 A3/MME/SIGLEC5/APLP2/
CD177/ITGAM/CYSTM1

GO:0101002 CC ficolin-1-rich granule 6.06E-10 QPCT/CLEC4D/FCER1G/LRG1/MMP9/MGAM/CD55/
FPR2/SLC2 A3/SIGLEC5/TNFAIP6/TIMP2

GO:1,904,724 CC tertiary granule lumen 2.03E-09 QPCT/LRG1/MMP9/TNFAIP6/TIMP2/ORM1/TCN1/
HP

GO:0035580 CC specific granule lumen 4.72E-09 QPCT/LRG1/TIMP2/ORM1/ARG1/SLPI/TCN1/HP

GO:0101003 CC ficolin-1-rich granule membrane 1.37E-07 CLEC4D/FCER1G/MGAM/CD55/FPR2/SLC2 A3/
SIGLEC5

GO:0034774 CC secretory granule lumen 1.86E-07 S100 A12/S100P/QPCT/LRG1/SRGN/RNASE2/
TIMP2/ORM1/ARG1/SLPI/TCN1/HP

GO:0060205 CC cytoplasmic vesicle lumen 1.86E-07 S100 A12/S100P/QPCT/LRG1/SRGN/RNASE2/
TIMP2/ORM1/ARG1/SLPI/TCN1/HP

GO:0038187 MF pattern recognition receptor activity 0.001765518 TLR2/CLEC4D/CLEC4E/TLR4

GO:0001540 MF amyloid-beta binding 0.005888223 TLR2/FPR2/ADRB2/ITGAM/TLR4

GO:0005543 MF phospholipid binding 0.026361914 GAB2/DYSF/ANXA3/WDFY3/KCNJ2/MME/RPH3 A/
ARHGAP26/SBF2

GO:0048306 MF calcium-dependent protein binding 0.026361914 S100 A12/S100P/ANXA3/CD177

GO:0033218 MF amide binding 0.026361914 TLR2/SLC7 A5/FPR2/MME/FKBP5/ADRB2/ITGAM/
TLR4

GO:0140375 MF immune receptor activity 0.026361914 IL1R2/FCER1G/FPR2/FCGR1 A/CCR6

GO:0042277 MF peptide binding 0.030593111 TLR2/SLC7 A5/FPR2/MME/ADRB2/ITGAM/TLR4

GO:0019864 MF IgG binding 0.036426074 FCER1G/FCGR1 A

GO:0055056 MF D-glucose transmembrane transporter activity 0.038738178 SLC2 A14/SLC2 A3

GO:0030246 MF carbohydrate binding 0.044172147 CLEC4D/MGAM/CLEC4E/ASGR2/SLC2 A3/SIGLEC5
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immunoregulatory processes. Similarly, Fig.  5A shows 
significantly different and highly statistically significant 
proportions of T.cells.CD4.memory.resting, Neutrophils 
and T.cells.gamma.delta as compared to the HC group.

Fig.  5B shows a significantly different composition of 
immune cells in the HC and AMI groups. Figure 6 shows 
a significant positive correlation between B cells naive 
and T cells CD8, Macrophages M2 and Neutrophils. 

Table 5  Pathway enrichment analysis of co-DEGs among COVID-19, AMI and AIS (CES)

ID Description p.adjust geneID

hsa04640 Hematopoietic cell lineage 0.010279082 7850/1604/4311/2209/3684

hsa05146 Amoebiasis 0.010279082 7850/7097/383/3684/7099

hsa05152 Tuberculosis 0.011102111 7097/2207/26253/2209/3684/7099

hsa05202 Transcriptional misregulation in cancer 0.01214225 7850/1647/597/4318/2209/3684

hsa05140 Leishmaniasis 0.015823732 7097/2209/3684/7099

hsa04613 Neutrophil extracellular trap formation 0.055315762 7097/2358/2209/3684/7099

hsa05134 Legionellosis 0.055315762 7097/3684/7099

hsa05221 Acute myeloid leukemia 0.084037187 597/2209/3684

hsa04145 Phagosome 0.119488133 7097/2209/3684/7099

hsa05161 Hepatitis B 0.122523639 7097/9586/4318/7099

hsa05215 Prostate cancer 0.158636996 7850/9586/4318

hsa05150 Staphylococcus aureus infection 0.158636996 2358/2209/3684

hsa04064 NF-kappa B signaling pathway 0.158636996 1647/597/7099

hsa04625 C-type lectin receptor signaling pathway 0.158636996 338,339/2207/26253

hsa05144 Malaria 0.25395003 7097/7099

hsa04915 Estrogen signaling pathway 0.289515945 9586/4318/2289

hsa00561 Glycerolipid metabolism 0.34307639 84,649/2713

hsa05321 Inflammatory bowel disease 0.34307639 7097/7099

hsa04664 Fc epsilon RI signaling pathway 0.34307639 9846/2207

hsa04924 Renin secretion 0.34307639 3759/154

Fig.3  (A) Boxplots were used to show the proportional distribution of different types of immune cells in HC group and COVID-19 group. The 
results showed that 13/22 immune cells were significantly different between the COVID-19 and HC groups. (B) Stacked bar graphs were used 
to demonstrate the immune cell composition of HC group and COVID-19 group. The results showed a large difference in immune cell levels 
between the two groups. P values were showed as:*, p < 0.05;**, p < 0.01;***, p < 0.001, ****, p < 0.0001
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There is a significant negative correlation between Neu-
trophils and T cells gamma delta. Figure 7A shows signif-
icantly different proportions of B.cells.naive, T.cells.CD8, 
and Neutrophils compared to the HC group. Figure  7B 
shows significantly different immune cell compositions 
in HC and AIS groups. Immune cell composition was 
significantly different.Fig. 8 showed a significant positive 
correlation between Macrophages M2 and Plasma cells, 
T cells CD8 and T cells regulatory Tregs. There was a 
significant negative correlation between T cells CD8 and 
Neutrophils.

Identification of hub genes
Figure  9 illustrates the PPI network analysis results, 
highlighting the top 10 most influential DEGs. These 
genes are MMP9, TLR2, TLR4, ITGAM, S100 A12, 
FCGR1 A, CD163, FCER1G, FPR2, and CLEC4D. We 
employed two machine learning methods to further 
identify common early diagnostic biomarkers and 
potential therapeutic targets for COVID-19, AMI, 
and AIS. These methods included random forest and 
XGBoost analyses (Figs .10, 11, 12).

Fig.4  The heatmap matrix is used to demonstrate the correlation between different types of immune cells. The colors and significance markers 
reflect the strength and significance of the correlation between the cells. Red: positive correlation, the darker the color, the stronger the correlation. 
Blue: negative correlation, the darker the color, the stronger the negative correlation. White: weak or no significant correlation. P values were 
showed as: *, p < 0.05; **, p < 0.01; ***, p < 0.001
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Figure  13 illustrates that in the GSE171110 dataset, 
random forest selected 74 genes while XGBoost identi-
fied 13 genes. In the GSE66360 dataset (Fig. 11), random 
forest selected 82 genes, with XGBoost identifying 37 
genes. For the GSE58294 dataset (Fig.  12), random for-
est selected 80 genes and XGBoost identified 12 genes. 
By employing a cross-method approach, we derived the 
co-DEGs: CLEC4E, S100 A12, and IL1R2.

These hub genes have the potential to act as biomark-
ers and targets for novel therapeutic strategies in disease 
research. Ultimately, integrating the PPI network and 
machine learning methods, we identified S100 A12 as a 
likely common early diagnostic biomarker and potential 
therapeutic target for these three diseases.

Verification and Evaluation of Hub Gene
As shown in Fig. 14A, the expression of S100 A12 in the 
COVID-19 patient group was significantly higher than in 
the healthy control group, with a statistically significant 
difference (P < 0.05). As shown in Fig. 14B, the expression 
of S100 A12 in the AMI patient group was significantly 
higher than in the healthy control group, with a highly 
statistically significant difference (P < 0.001). As shown in 
Fig. 14C, the expression of S100 A12 in the AIS patient 
group was significantly higher than in the healthy con-
trol group, with a highly statistically significant difference 
compared to the healthy control group (P < 0.0001).

The results of evaluating the diagnostic performance 
of S100 A12 are as follows: As shown in Fig.  15A, the 
area under the curve (AUC) for S100 A12 in diagnosing 
COVID-19 was 0.775(95% CI: 0.608–0.942), indicating 
moderate diagnostic ability. As shown in Fig.  15B, the 

AUC for S100 A12 in diagnosing AMI was 0.782(95% 
CI: 0.653–0.911),indicating good diagnostic ability. As 
shown in Fig. 15C, the AUC for S100 A12 in diagnosing 
AIS was 0.812(95% CI: 0.702–0.922),indicating strong 
diagnostic ability.

In conclusion, S100 A12 was significantly up-regu-
lated in patients with COVID-19, AMI and AIS, consist-
ent with the experimental results.ROC curve analyses 
showed that S100 A12 had moderate to good diagnostic 
efficacy in discriminating between diseased patients and 
healthy controls, with the best performance in AIS (AUC 
= 0.812).

QRT‑PCR
To further validate the expression characteristics of 
S100 A12 in different disease states, we used QRT-
PCR to measure the expression levels of S100 A12 in 
patients with COVID-19, AMI, and AIS, as well as in 
healthy individuals. As shown in Fig. 16, compared to the 
healthy control group, S100 A12 exhibited an up-regu-
lated expression pattern in all three disease groups. The 
results are consistent with experimental findings, fur-
ther confirming the reliability of S100 A12 as a potential 
biomarker.

Discussion
Strictly speaking, COVID-19 is not a single disease but a 
clinical syndrome. Studies have shown that because of its 
association with immunity and inflammation, COVID-
19 infection causes more than just pneumonia, espe-
cially in elderly patients with underlying diseases such 
as hypertension and diabetes, and is also associated with 

Fig.5  (A) Boxplots were used to show the proportional distribution of different types of immune cells in HC group and AMI group. The results 
showed that 9/22 immune cells were significantly different between the AMI and HC groups. (B) Stacked bar graphs were used to demonstrate 
the immune cell composition of HC group and AMI group. The results showed a large difference in immune cell levels between the two groups. P 
values were showed as:*, p < 0.05;**, p < 0.01;***, p < 0.001, ****, p < 0.0001
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thrombosis in the organism, which can lead to dreadful 
diseases such as AMI and AIS. Consequently, it is cru-
cial to investigate new targets and biomarkers for the 
early diagnosis of thrombotic diseases associated with 
COVID-19.

Under normal circumstances, the immune system plays 
a protective role for the body. However, in cases of severe 
or prolonged inflammatory stimuli, this protective effect 
can become detrimental, leading to negative outcomes 
such as a hypercoagulable state in the blood [25, 26]. 
Numerous reports have indicated a correlation between 
COVID-19 infection and coagulopathy, including throm-
bus formation. Early in the infection, certain laboratory 
markers can reflect changes in the level of inflammation, 
such as elevated levels of D-dimer and fibrinogen. The 
underlying causes of coagulopathy may involve factors 
such as hypoxia, direct viral infection, and the induc-
tion of tissue factor production by pro-inflammatory 

cytokines, including IL-1, IL-6, and TNF. These cytokines 
activate the extrinsic coagulation pathway [27–29]. It 
has been shown that the inflammatory response also 
attenuates certain anticoagulant mechanisms, such as 
the antithrombin and proteinase C pathways [30, 31]. 
In addition, novel coronaviruses can also cause direct 
damage to vascular endothelial cells, thereby reducing 
their antithrombotic activity [32, 33]. It has been shown 
that endothelial dysfunction and endothelial cell dam-
age in COVID-19 patients can cause increased vascu-
lar endothelial permeability and increased endothelial 
cell concentration in the systemic circulation, leading 
to higher levels of soluble intercellular adhesion mol-
ecules, which further exacerbate the hypercoagulable 
state of the blood, and that the massive release of tissue 
factor (TF) and neutrophils promotes the formation of 
immune thrombi [34–36]. More specifically, COVID-19 
is a multisystem disease involving endothelial cells from 

Fig.6  The heatmap matrix is used to demonstrate the correlation between different types of immune cells. The colors and significance markers 
reflect the strength and significance of the correlation between the cells. Red: positive correlation, the darker the color, the stronger the correlation. 
Blue: negative correlation, the darker the color, the stronger the negative correlation. White: weak or no significant correlation. P values were 
showed as: *, p < 0.05; **, p < 0.01; ***, p < 0.001
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multiple systems. And the more severe the neocoronary 
pneumonia infection, the higher the levels of markers 
of endothelial damage, such as von willebrand factor 
(VWF), intercellular adhesion molecules including inter-
cellular cell adhesion molecule-1(ICAM-1) and vascular 
cell adhesion molecule-1(VCAM-1), which can promote 
thrombosis [25, 37, 38]. Studies have shown a significant 
increase in the incidence of cardiovascular disease in 
patients with COVID-19, particularly thrombosis-related 
diseases such as AMI, AIS and pulmonary embolism, 
with rates in critically ill patients tens of times higher 
than in patients with mild infections [3–40].

Research has demonstrated a seven-fold increase in 
the incidence of myocardial infarction within one week 
of COVID-19 infection, and a long-term cardiovascu-
lar risk after infection, with stroke being the most com-
mon manifestation of cerebrovascular disease [41–43]. 
AMI and AIS are the same as thrombotic diseases, and 
they are very closely related to each other. After an AMI, 
certain factors promote thrombus formation, such as 
post-infarction myocardial ischaemia, dyskinesia and 
hypercoagulability of the blood. These clots do not only 
stay in the heart and cause cardiac complications, but 
also reach the body’s centre through the circulatory sys-
tem and cause cerebral embolism, leading to AIS. Studies 
have shown that CES account for a large proportion of 
all ischaemic strokes, and that the risk of AIS increases 
dramatically within a short period of time after myocar-
dial infarction [44, 45]. Because of the decline in cardiac 
ejection volume, left ventricular dilatation and ventricu-
lar remodelling occur in long-term conditions and also 

increase the risk of cardiogenic stroke [46]. The interac-
tion between AMI and CES suggests that heart disease 
negatively affects cerebral perfusion, thereby increas-
ing the risk and severity of stroke. Neocoronavirus also 
crosses the blood–brain barrier and directly attacks 
brain endothelial cells, inducing hypercoagulability of 
blood in the brain and promoting thrombosis [7]. There-
fore, clinical practice should emphasise early diagnosis, 
as well as monitoring and management of patients with 
new crown pneumonia who may develop AMI and AIS. 
Currently, there are relatively few studies on the cor-
relation between COVID-19, AMI and AIS. We applied 
bioinformatics methods to explore these three diseases 
using three GEO datasets, GSE171110, GSE66360, and 
GSE58294, and found co-DEGs among them. To investi-
gate how the genes affect disease onset and progression 
at the molecular level, we used GO and KEGG enrich-
ment analyses to make predictions about the possible 
functions and pathways of these genes. Enrichment anal-
ysis showed that co-DEGs were significantly enriched 
in leukocytes, neutrophils and other related immune-
inflammatory responses. The immune system plays a cru-
cial role in the progression of diseases, and neutrophils 
are intrinsic immune cells, which are activated during 
infections and play an active role in the body’s immu-
nity, but their over-activation is harmful to the human 
body, as it can induce excessive immune responses and 
lead to microvascular and even macrovascular thrombo-
sis, which can lead to inadequate perfusion of organs and 
tissues, and is one of the main causes of AMI and AIS, 
and excessive immune responses can directly damage the 

Fig.7  (A) Boxplots were used to show the proportional distribution of different types of immune cells in HC group and AIS(CES) group. The results 
showed that 7/22 immune cells were significantly different between the AIS and HC groups. (B) Stacked bar graphs were used to demonstrate 
the immune cell composition of HC group and AIS group. The results showed a difference in immune cell levels between the two groups. P values 
were showed as:*, p < 0.05;**p < 0.01;***, p < 0.001, ****, p < 0.0001



Page 13 of 23Ma et al. BMC Neurology          (2025) 25:201 	

cardio-cerebral vascular system [47]. It has been shown 
that COVID-19 infection can increase the ability of neu-
trophils to produce neutrophil extracellular traps (NETs), 
and NETs have been shown to be a biomarker of the 
severity of COVID-19 infection [48, 49]. Activated neu-
trophils can secrete NETs, which consists of a meshwork 
of DNA, histones and other substances to further kill 
pathogens. However, its formation may lead to increased 
inflammation in the organism and promote coagula-
tion, vascular occlusion, and thrombosis [50, 51]. NETs 
can be degraded by circulating DNA enzymes, and the 
products of degradation, such as cell-free DNA (cfDNA) 
and histones, can activate intrinsic pathways of coagula-
tion, which can further contribute to the onset of disease 

[52–54]. In addition, COVID-19 leads to an increase 
in circulating NETs and attacks the body’s endothe-
lial cells, also causing VCAM-1 and ICAM-1 present in 
endothelial cells to be released, further promoting blood 
hypercoagulability [55, 56]. Studies have found that in 
patients who recovered from COVID-19, the neutro-
phil-to-lymphocyte ratio (NLR) at the time of admission 
was significantly lower compared to those whose condi-
tion worsened. Therefore, NLR can serve as a biomarker 
for the early prognosis of COVID-19 patients [57]. In 
COVID-19 patients, lymphocyte reduction is com-
monly observed, including both CD4 + T cells and CD8 
+ T cells [58]. It is worth noting that γδ T cells, a spe-
cialized subset of lymphocytes, also exhibit a reduction 

Fig.8  The heatmap matrix is used to demonstrate the correlation between different types of immune cells. The colors and significance markers 
reflect the strength and significance of the correlation between the cells. Red: positive correlation, the darker the color, the stronger the correlation. 
Blue: negative correlation, the darker the color, the stronger the negative correlation. White: weak or no significant correlation. P values were 
showed as: *, p < 0.05; **, p < 0.01; ***, p < 0.001
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in number due to COVID-19 infection [59]. The reduc-
tion in γδ T cells may be related to excessive activation 
and cellular exhaustion. Certain cytokines, such as IL-10, 
IL-6, and TNF-α, show a negative correlation with T cell 
count, suggesting that these cytokines may also play a 
role in the process of T cell reduction [60, 61]. In addi-
tion, changes in spleen function are also involved in the 
process of reduced B cell and T cell lymphocyte counts 
[62]. It is noteworthy that mast cells may become a ther-
apeutic target for alleviating the characteristic airway 
inflammation during the hyperacute phase of COVID-19 
[63]. Activated neutrophils and monocytes interact with 
platelets and the coagulation cascade, leading to intravas-
cular thrombosis in small and large blood vessels [64].

Fibronectin is a substance that plays a crucial role in 
the recognition and activation of the lectin pathway (LP), 
one of the complement agglutination pathways, and of 
which neutrophils are the main source. It is found pre-
dominantly in cells, with low levels in the circulation. 
There are three types of fibronectin, of which ficolin-1 
may be involved in part of the body’s innate immu-
nity, meaning that it contributes to the body’s immune 
defence against infection [65]. R. Zangari et  al. demon-
strated that ficolin-1 is heavily depleted within a short 

period of time after AIS and can be used as a prognostic 
predictive marker in patients with AIS [66, 67]. In addi-
tion, ficolin-3 has also been reported to be associated 
with AIS and subarachnoid haemorrhage [68, 69].

The relationship between COVID-19 and the immune 
mechanisms involved in the pathogenesis of cardiovas-
cular disease is intricate and multifaceted. The results of 
our enrichment analysis of COVID-19, AMI and AIS co-
DEGs showed that co-DEGs were mainly associated with 
neutrophils, leukocytes and immune responses, indicat-
ing that the three diseases mentioned above are extremely 
related to inflammatory immune responses. Therefore, 
we later performed immune infiltration analysis, which 
revealed significant differences in the content of immune 
cells—including B cells, T cells, NK cells, neutrophils, 
eosinophils, dendritic cells, and macrophages—between 
the three diseases and normal samples. After an organ-
ism is infected with a virus, immune cells such as neutro-
phils, eosinophils and NK cells react first and can directly 
kill the pathogen; this immune response is known as non-
specific immunity. In addition, specific immunity will also 
play a role sometime after the infection occurs, which 
relies on the antigen presentation of dendritic cells, mac-
rophages and B cells, thus activating the specific immune 

Fig. 9  PPI network and hub genes. Proteins are represented as nodes and functional relationships by edges. The top 10 most influential genes were 
MMP9, TLR2, TLR4, ITGAM, S100 A12, FCGR1 A, CD163, FCER1G, FPR2, and CLEC4D
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response of T cells and B cells [70, 71].。The pathologi-
cal features of COVID-19 are primarily characterized by 
significant infiltration of macrophages and neutrophils 
in the lungs, which subsequently leads to ARDS, includ-
ing typical manifestations such as alveolar epithelial cell 
injury, hyaline membrane formation, and interstitial 
fibrosis [72, 73]. The highly activated pulmonary mac-
rophages, derived from infiltrating inflammatory mono-
cytes, promote the massive release of pro-inflammatory 
cytokines (such as IL-6 and TNF-α) and the abnormal 
recruitment of cytotoxic effector cells (such as neutro-
phils and CD8 + T cells), ultimately leading to further 
exacerbation of local tissue damage [74]. Lymphocytes 
play a critical role in antiviral immunity. CD8 + cytotoxic 
T cells (CTL) directly mediate viral clearance through 
the release of effector molecules such as perforin, gran-
zymes, and IFN-γ. Additionally, CD4 + helper T cells can 
synergistically enhance the ability of T cells and B cells 
to combat viral infections. However, under conditions 
of chronic viral infection or persistent antigen exposure, 
T cells may enter an exhausted state, thereby weakening 
the effectiveness of antiviral immunity [75–78]. As previ-
ously mentioned, in COVID-19 patients, NETs released 

by activated neutrophils are one of the key mechanisms 
mediating coagulation dysfunction and the development 
of thrombotic diseases. Additionally, the inflammatory 
microenvironment induces the expression of tissue fac-
tor by endothelial cells, macrophages, and neutrophils, 
significantly enhancing the activation of the coagulation 
cascade in the lungs. The formation of microthrombi 
may also lead to dysfunction in other organs [64, 79]. The 
disruption of the blood–brain barrier caused by AIS cre-
ates conditions for the migration of immune cells into the 
brain. White blood cells and other immune cells, includ-
ing monocytes/macrophages, neutrophils, and lympho-
cytes from the bloodstream, migrate to the brain and 
induce inflammatory responses [80–82]. As the earliest 
subpopulation of leukocytes to infiltrate ischaemic brain 
tissue, neutrophils persist in the cerebral microvascula-
ture and further exacerbate blood–brain barrier disrup-
tion by releasing agents such as protein hydrolases [83]. 
As the earliest infiltrating T cell subset in ischemic brain 
tissue, CTL can release effector molecules such as per-
forin and granzymes after cell–cell interactions and anti-
gen-dependent activation, leading to neuronal death and 
exacerbating brain tissue damage [84, 85].

Fig. 10  Feature importance analysis using two machine learning methods: XGBoost and random forest model. A) corresponds to COVID-19, 
B) to AMI and C) to AIS. These plots show the rankings of feature importance derived from the XGBoost model (Plot A) and the Random Forest 
model (Plot B). In plot A, feature importance is assessed by gain (Gain), which indicates the contribution of each gene to the predictive power 
of the model. In plot B, importance is measured by mean accuracy decrease, which indicates the importance of each gene to the model’s 
prediction accuracy
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The immune cell response following AMI exhibits a 
distinct temporal pattern: within 6 to 24 h after infarc-
tion, neutrophils are the first to infiltrate the infarcted 
area, followed by a significant accumulation of pro-
inflammatory monocytes and macrophages between 
48 to 72 h, collectively mediating myocardial ischemia/
reperfusion injury (IRI)-related cardiomyocyte death 
and tissue damage. Subsequently, the process enters an 
anti-inflammatory repair phase (days 4–7), which is pri-
marily dominated by anti-inflammatory monocytes/mac-
rophages. These cells regulate the inflammatory response 
afterAMI by suppressing, clearing, and limiting the initial 
pro-inflammatory cells [86, 87]. Interestingly, researchers 
have found through animal experiments that mice lack-
ing dendritic cells exhibit worse recovery after AMI, sug-
gesting that dendritic cells may play a protective role in 
the inflammatory response following AMI [88].

We constructed a PPI network and identified the top 
10 DEGs common to COVID-19, AMI, and AIS as the 
most influential genes, and these pivotal genes include 
MMP9, TLR2, TLR4, ITGAM, S100 A12, FCGR1 A, 
CD163, FCER1G, FPR2, and CLEC4D.Random For-
est and XGBoost analyses of these two machine learn-
ing methods can further identify early diagnostic 

biomarkers and potential therapeutic targets common 
to these three diseases. These DEGs are: CLEC4E, S100 
A12, IL1R2. The final gene derived from the combined 
PPI network and machine learning approach is S100 
A12, which may be the common early diagnostic bio-
marker and potential therapeutic target for these three 
diseases. The C-type lectin domain family 4 member E 
(CLEC4E) holds significant importance in the field of 
sterile inflammation. It is typically expressed by leuko-
cytes and activated through inflammatory responses. 
Denise Veltman and colleagues demonstrated, through 
complementary experimental methods in pig, mouse, 
and human samples, the substantial potential of 
CLEC4E as a biomarker for the severity of AMI [89]. 
In addition, studies have shown that CLEC4E, along 
with other genes, can serve as biomarkers for AIS [90]. 
IL1R2 is a member of the interleukin-1 receptor fam-
ily (ILRs). It is released in a soluble form (sIL1R2) and 
exerts a negative regulatory effect on the IL-1 system, 
primarily participating in the regulation of local inflam-
mation [91]. According to relevant reports, IL1R2 is 
highly expressed in AIS patients and is closely associ-
ated with the severity of coronary artery disease. Addi-
tionally, IL1R2 serves as a biomarker for AMI, and 

Fig. 11  Feature importance analysis using two machine learning methods: XGBoost and random forest model. A) corresponds to COVID-19, 
B) to AMI and C) to AIS. These plots show the rankings of feature importance derived from the XGBoost model (Plot A) and the Random Forest 
model (Plot B). In plot A, feature importance is assessed by gain (Gain), which indicates the contribution of each gene to the predictive power 
of the model. In plot B, importance is measured by mean accuracy decrease, which indicates the importance of each gene to the model’s 
prediction accuracy
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plays a role in the development of pulmonary fibrosis in 
severe COVID-19 patients [92–95].

S100 A12, identified as a biomarker for the three dis-
eases through various methods, is a calcium-binding 
protein expressed by neutrophils and monocyte mac-
rophages and belongs to the S100 protein subfamily of 
myeloid-associated proteins [96, 97]. It plays a crucial 
role in the body’s defense against inflammation and in 
maintaining immune homeostasis. During the patho-
logical process of diseases, its expression significantly 
increases, making it a potential biomarker for disease 
diagnosis and early intervention. Numerous studies 
have reported that S100 A12 promotes the secretion of 
pro-inflammatory cytokines and is associated with the 
development of many diseases, such as coronary artery 
disease, ARDS, and cerebrovascular disease [96, 98–103]. 
In addition, it has been demonstrated that S100 A12 is a 
hub gene immunologically related to AMI and AIS [103, 
104]。Interestingly, S100 A12 was found to be associated 
with the severity of COVID-19 [105]. It has been reported 
that the receptor for advanced glycation end products 
(RAGE) acts as a specific receptor for the S100 A12 pro-
tein, primarily located on the surface of endothelial cells, 

monocytes, and macrophages. S100 A12 can bind to 
these cell surface receptors and activate them. This inter-
action promotes the expression of ICAM-1 and VCAM-1 
on endothelial cells [98, 106]. This may be related to the 
widespread endothelial cell damage across multiple sys-
tems caused by COVID-19, which further exacerbates 
the hypercoagulable state in the body, leading to a sharp 
increase in the incidence of thrombotic-related diseases, 
such as AMI and AIS. The mechanism by which S100 
A12 contributes to the development of thrombotic dis-
eases may involve multiple aspects. Firstly, S100 A12 
binds with high affinity to receptor for RAGE, activating 
the NF-κB signaling pathway, which in turn upregulates 
the expression levels of related cytokines. Additionally, 
S100 A12 may participate in the pathological process of 
thrombosis through its chemotactic activity. Researchers 
constructed a transgenic mouse model with smooth mus-
cle cell-specific expression of S100 A12 and found that 
this model exhibited significantly increased calcification 
in the coronary arteries and aorta, along with reduced 
stability of arterial plaques [97, 106, 107]. Patricia Mester 
et  al. found in their study of serum from moderate and 
severe COVID-19 patients that the severity of COVID-19 

Fig. 12  Feature importance analysis using two machine learning methods: XGBoost and random forest model. A) corresponds to COVID-19, 
B) to AMI and C) to AIS. These plots show the rankings of feature importance derived from the XGBoost model (Plot A) and the Random Forest 
model (Plot B). In plot A, feature importance is assessed by gain (Gain), which indicates the contribution of each gene to the predictive power 
of the model. In plot B, importance is measured by mean accuracy decrease, which indicates the importance of each gene to the model’s 
prediction accuracy
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was positively correlated with the degree of neutrophil 
dysfunction. The S100 A12 levels in severe COVID-
19 patients were higher than in moderate patients, but 

the increase in neutrophil count was less pronounced 
than that of S100 A12, indicating that neutrophil func-
tion was impaired in severe COVID-19 patients. This 

Fig.13  The Venn diagram is used to show the overlap of important genes obtained from different datasets when feature screening is performed 
using XGBoost and Random Forest models. The different ellipses in the figure represent the set of feature genes for different combinations 
of datasets and algorithms, and the overlap in the central region indicates the common genes identified in all combinations. By screening 
the genes using two separate machine learning methods on each disease dataset, the final co-DEGs for them were CLEC4E, S100 A12, IL1R2

Fig.14  Expression of S100 A12 in the validation dataset. A The expression of S100 A12 was increased and significant in the COVID-19 group relative 
to the HC group. B The expression of S100 A12 was increased and significant in the AMI group relative to the HC group. C The expression of S100 
A12 was increased and meaningful in the AIS group relative to the HC group. Orange indicates the disease group and blue indicates the normal 
group, P values are shown as *, P < 0.05; **, P < 0.01; ***, P < 0.001
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study proposed S100 A12 as a marker for the severity 
of COVID-19 [108]. Furthermore, the lung tissue is rich 
in RAGE, and elevated levels of S100 A12 in COVID-19 
patients bind to RAGE in the lungs, leading to the activa-
tion of pulmonary endothelial cells, leukocyte extravasa-
tion, and neutrophil accumulation, thereby contributing 
to the occurrence of acute lung injury and acute respira-
tory distress syndrome [100, 106].

Although the content and results of our study have 
largely achieved what was originally envisaged, there 
are still some shortcomings. Firstly, our research 
data is based on public databases, and there is a lack 
of validation of the results. Second, the results based 
on the sequencing of blood samples were not directly 
sequenced in the organs where the disease occurs, such 

as the lungs and the heart. Finally, this study only used 
genomics-related methods, without comprehensive 
multi-omics analysis, and the results are slightly less 
credible. However, based on a large number of studies, 
our results are basically consistent with theirs. To fur-
ther enhance the clinical value of the research, future 
studies should focus on conducting multicenter, large-
sample clinical validation of the diagnostic value of 
S100 A12, evaluating its diagnostic efficacy across dif-
ferent diseases and stages. Simultaneously, the devel-
opment of quantitative detection kits, along with the 
establishment of a rapid detection platform, is essential 
to meet the timeliness requirements of clinical test-
ing. Early diagnosis and timely clinical interventions 
based on S100 A12 levels can thereby improve patient 

Fig.15  ROC curves for S100 A12 in the validation dataset. (A) ROC curve of S100 A12 in the COVID-19 dataset. (B) ROC curve of S100 A12 
in the AMI dataset. (C) ROC curve of S100 A12 in the AIS dataset. The horizontal coordinate is the rate of false positives, expressed as 1-specificity, 
and the vertical coordinate is the rate of true positives, expressed as sensitivity

Fig.16  QRT-PCR was performed to validate the expression of S100 A12 in patients with COVID-19, AMI, and AIS. S100 A12 expression was relatively 
low in healthy individuals, while significant up-regulation was observed in patients. Orange indicates the disease group and blue indicates 
the normal group, P values are shown as *, P < 0.05; **, P < 0.01; ***, P < 0.001
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outcomes. Additionally, S100 A12 could serve as a 
routine screening indicator for high-risk populations 
and be used in combination with other biomarkers to 
enhance screening specificity. Through these strategies, 
S100 A12 is expected to become a bridge connecting 
basic research and clinical practice, providing innova-
tive solutions for the precise diagnosis and treatment of 
related diseases.

Conclusion
We investigated the diagnostic biomarkers and immune 
infiltration characteristics common to COVID-19, AMI 
and AIS using bioinformatics methods and machine 
learning. Functional and pathway analyses showed 
that co-DEGs were mainly enriched in immune-
inflammatory responses such as leukocytes and neu-
trophils. Using two machine learning methods and 
PPI networks, we obtain the common immune-related 
therapeutic target and biomarker that may ultimately 
affect these three diseases: S100 A12. In addition, we 
employed a dual-validation approach, including inde-
pendent dataset validation and laboratory validation, 
and found that it was significantly upregulated in all 
three diseases, consistent with the experimental results. 
The ROC curve analysis revealed that S100 A12 dem-
onstrated moderate to good diagnostic performance in 
distinguishing disease patients from healthy controls, 
with the most prominent performance observed in AIS 
(AUC = 0.812). Our study suggests that S100 A12, as 
a potential biomarker, may offer new insights for the 
early diagnosis of COVID-19, AMI, and AIS. However, 
this study has some limitations, such as the small sam-
ple size of the datasets, lack of laboratory validation, 
and failure to account for other potential comorbidi-
ties in patients. Therefore, future studies should further 
validate the diagnostic performance of S100 A12 in dif-
ferent populations and explore its clinical application 
potential.
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